AI Article Synopsis

  • Researchers developed a new nanoparticle formulation containing 5% minoxidil (MXD) using a bead mill method, building on previous findings that 1% MXD nanoparticles improved hair growth in mice.
  • The study compared the hair-growth effects of the new MXD-NPs with a commercially available minoxidil solution, finding that MXD-NPs led to significantly better hair growth results and higher levels of MXD in the hair bulge.
  • Activation of hair follicle epithelial stem cells (HFSC) was observed in the mice treated with MXD-NPs, suggesting that these nanoparticles enhance hair growth by improving drug delivery to hair follicles.

Article Abstract

We previously found that 1% minoxidil (MXD) nanoparticles prepared using a bead mill method led to an increase I n hair follicle delivery and hair growth in C57BL/6 mice. In the present study, we designed a nanoparticle formulation containing 5% MXD (MXD-NPs) using the bead mill method and investigated the hair-growth effect of MXD-NPs and a commercially available MXD solution (CA-MXD). Hair growth and in vivo permeation studies were conducted using C57BL/6 mice. Moreover, we examined the MXD contents in the upper (hair bulge) and the lower hair follicle (hair bulb) and observed the hair follicle epithelial stem cells (HFSC) by immunohistochemical staining using the CD200 antibody. The mean particle size of the MXD in the MXD-NPs was 139.8 nm ± 8.9 nm. The hair-growth effect of the MXD-NPs was higher than that of CA-MXD, and the MXD content in the hair bulge of mice treated with MXD-NPs was 7.4-fold that of the mice treated with CA-MXD. In addition, the activation of HFSC was observed around the bulge in the MXD-NPs-treated mice. We showed that MXD-NPs enable the accumulation of MXD in the upper hair follicles more efficiently than CA-MXD, leading the activation of HFSC and the hair growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145891PMC
http://dx.doi.org/10.3390/pharmaceutics14050947DOI Listing

Publication Analysis

Top Keywords

hair growth
16
hair
12
c57bl/6 mice
12
hair follicle
12
hair follicles
8
growth c57bl/6
8
bead mill
8
mill method
8
mxd mxd-nps
8
hair-growth mxd-nps
8

Similar Publications

Trichohepatoenteric syndrome (THES) is a rare genetic disorder inherited in an autosomal recessive manner. THES primarily leads to neonatal enteropathy, typically manifesting as severe, persistent diarrhea, distinctive facial features such as frontal bossing and a broad flat nasal bridge, woolly and fragile hair, immunodeficiency resulting in recurrent infections, failure to thrive (FTT), and liver complications including fibrosis or cirrhosis. This multisystem disorder is linked to mutations in the tetratricopeptide repeat domain 37 (TTC37) gene, also known as superkiller complex (SKIC) protein 3, responsible for THES type 1, and the Ski2-like ribonucleic acid (RNA) helicase (SKIV2L) gene, also known as SKIC2, responsible for THES type 2.

View Article and Find Full Text PDF

Stem cell therapy for bladder regeneration: A comprehensive systematic review.

Regen Ther

March 2025

Pediatric Urology and Regenerative Medicine Research Center, Gene Cell and Tissue Research Institute Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran.

Tissue engineering has been considered a potential choice for urinary system reconstruction. Here, we aim to a broad spectrum of employed stem cells in bladder regeneration by performing a comprehensive systematic review. In January 2024, we searched Scopus, PubMed, and Embase databases for studies that tried bladder regeneration by tissue engineering using stem cells.

View Article and Find Full Text PDF

Cyclic nucleotide-gated channel 5 (CNGC5), CNGC6, and CNGC9 (CNGC5/6/9 for simplicity) control Arabidopsis root hair (RH) growth by mediating the influx of external Ca to establish and maintain a sharp cytosolic Ca gradient at RH tips. However, the underlying mechanisms for the regulation of CNGCs remain unknown. We report here that calcium dependent protein kinase 1 (CPK1) directly activates CNGC5/6/9 to promote Arabidopsis RH growth.

View Article and Find Full Text PDF

Human Hair Follicle Mesenchymal Stem Cell-Derived Exosomes Attenuate UVB-Induced Photoaging via the miR-125b-5p/TGF-β1/Smad Axis.

Biomater Res

January 2025

Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.

Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.

View Article and Find Full Text PDF

The Role of Primary Cilia in Myoblast Proliferation and Cell Cycle Regulation during Myogenesis.

Cell Struct Funct

January 2025

College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University.

The process of mammalian myogenesis is fundamental to understanding muscle development and holds broad relevance across multiple fields, from developmental biology to regenerative medicine. This review highlights two key aspects: myoblast proliferation and the role of cilia in this process. Myoblasts, as muscle precursor cells, must undergo tightly regulated cycles of proliferation and differentiation to ensure proper muscle growth and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!