Drug-induced immune thrombocytopenia (DITP) often occurs in patients receiving many drug treatments simultaneously. However, clinicians usually fail to accurately distinguish which drugs can be plausible culprits. Despite significant advances in laboratory-based DITP testing, in vitro experimental assays have been expensive and, in certain cases, cannot provide a timely diagnosis to patients. To address these shortcomings, this paper proposes an efficient machine learning-based method for DITP toxicity prediction. A small dataset consisting of 225 molecules was constructed. The molecules were represented by six fingerprints, three descriptors, and their combinations. Seven classical machine learning-based models were examined to determine an optimal model. The results show that the RDMD + PubChem-k-NN model provides the best prediction performance among all the models, achieving an area under the curve of 76.9% and overall accuracy of 75.6% on the external validation set. The application domain (AD) analysis demonstrates the prediction reliability of the RDMD + PubChem-k-NN model. Five structural fragments related to the DITP toxicity are identified through information gain (IG) method along with fragment frequency analysis. Overall, as far as known, it is the first machine learning-based classification model for recognizing chemicals with DITP toxicity and can be used as an efficient tool in drug design and clinical therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143325 | PMC |
http://dx.doi.org/10.3390/pharmaceutics14050943 | DOI Listing |
BMJ Open
December 2024
Health Services and Systems Research, Duke-NUS Medical School, Singapore.
Introduction: As surgical accessibility improves, the incidence of postoperative complications is expected to rise. The implementation of a precise and objective risk stratification tool holds the potential to mitigate these complications by early identification of high-risk patients. Moreover, it could address the escalating costs from resource misallocation.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States.
Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content.
View Article and Find Full Text PDFJ Gen Intern Med
January 2025
Northwell, 2000 Marcus Ave., Suite 300, New Hyde Park, NY, 11042-1069, USA.
Background And Aims: The importance of risk stratification in patients with chest pain extends beyond diagnosis and immediate treatment. This study sought to evaluate the prognostic value of electrocardiogram feature-based machine learning models to risk-stratify all-cause mortality in those with chest pain.
Methods: This was a prospective observational cohort study of consecutive, non-traumatic patients with chest pain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!