Drug-induced immune thrombocytopenia (DITP) often occurs in patients receiving many drug treatments simultaneously. However, clinicians usually fail to accurately distinguish which drugs can be plausible culprits. Despite significant advances in laboratory-based DITP testing, in vitro experimental assays have been expensive and, in certain cases, cannot provide a timely diagnosis to patients. To address these shortcomings, this paper proposes an efficient machine learning-based method for DITP toxicity prediction. A small dataset consisting of 225 molecules was constructed. The molecules were represented by six fingerprints, three descriptors, and their combinations. Seven classical machine learning-based models were examined to determine an optimal model. The results show that the RDMD + PubChem-k-NN model provides the best prediction performance among all the models, achieving an area under the curve of 76.9% and overall accuracy of 75.6% on the external validation set. The application domain (AD) analysis demonstrates the prediction reliability of the RDMD + PubChem-k-NN model. Five structural fragments related to the DITP toxicity are identified through information gain (IG) method along with fragment frequency analysis. Overall, as far as known, it is the first machine learning-based classification model for recognizing chemicals with DITP toxicity and can be used as an efficient tool in drug design and clinical therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143325PMC
http://dx.doi.org/10.3390/pharmaceutics14050943DOI Listing

Publication Analysis

Top Keywords

machine learning-based
12
ditp toxicity
12
drug-induced immune
8
immune thrombocytopenia
8
toxicity prediction
8
rdmd pubchem-k-nn
8
pubchem-k-nn model
8
ditp
5
toxicity
4
thrombocytopenia toxicity
4

Similar Publications

Introduction: As surgical accessibility improves, the incidence of postoperative complications is expected to rise. The implementation of a precise and objective risk stratification tool holds the potential to mitigate these complications by early identification of high-risk patients. Moreover, it could address the escalating costs from resource misallocation.

View Article and Find Full Text PDF

Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content.

View Article and Find Full Text PDF

Background And Aims: The importance of risk stratification in patients with chest pain extends beyond diagnosis and immediate treatment. This study sought to evaluate the prognostic value of electrocardiogram feature-based machine learning models to risk-stratify all-cause mortality in those with chest pain.

Methods: This was a prospective observational cohort study of consecutive, non-traumatic patients with chest pain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!