The conventional morphological characterization of mosquito species remains heavily used for species identification in Jazan, Saudi Arabia. It requires substantial expertise and time, as well as having difficulty in confirming identity of morphologically similar species. Therefore, to establish a reliable and accurate identification system that can be applied to understanding spatial distribution of local mosquito species from the Jazan region, DNA barcoding was explored as an integrated tool for mosquito species identification. In this study, 44 adult mosquito specimens were analyzed, which contain 16 species belong to three genera of potential mosquito disease vectors (, , and ). The specimens were collected from the Jazan region located in southwest Saudi Arabia. These included old and preserved mosquito voucher specimens. In addition, we assessed the genetic distance based on the generated mitochondrial partial DNA barcodes to detect cryptic diversity across these taxa. Nine mosquito species belonging to three genera were successfully barcoded and submitted to GenBank, namely: , , , , , , , , and . Of these nine species, , , , and were registered in GenBank for the first time from Saudi Arabia. The DNA barcodes generated a 100% match to known barcodes of these mosquito species, that also matched with the morphological identification. was found to be either a case of cryptic species (subspecies) or a new species from the region. However, more research has to be conducted to prove the latter. This study directly contributes to the development of a molecular reference library of mosquito species from the Jazan region and Saudi Arabia. The library is essential for confirmation of species in support of existing mosquito surveillance and control programmes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171578PMC
http://dx.doi.org/10.3390/pathogens11050486DOI Listing

Publication Analysis

Top Keywords

mosquito species
24
saudi arabia
20
jazan region
16
species
13
mosquito
11
dna barcoding
8
potential mosquito
8
mosquito disease
8
disease vectors
8
region saudi
8

Similar Publications

Background: Mosquitoes are important drivers of infectious diseases transmission, with Anopheles mosquitoes being responsible of malaria transmission. In Cambodia, where malaria is prevalent in forested regions, understanding the ecology of these vectors is crucial. This study aimed to investigate the abundance, distribution, seasonal patterns, biting behaviour of Anopheles mosquitoes, and prevalence of Plasmodium, in Mondulkiri province, Northeastern Cambodia.

View Article and Find Full Text PDF

Deep conservation complemented by novelty and innovation in the insect eye ground plan.

Proc Natl Acad Sci U S A

January 2025

Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093.

A spectacular diversity of forms and features allow species to thrive in different environments, yet some structures remain relatively unchanged. Insect compound eyes are easily recognizable despite dramatic differences in visual abilities across species. It is unknown whether distant insect species use similar or different mechanisms to pattern their eyes or what types of genetic changes produce diversity of form and function.

View Article and Find Full Text PDF

Insect-specific RNA viruses detection in Field-Caught Aedes aegypti mosquitoes from Argentina using NGS technology.

PLoS Negl Trop Dis

January 2025

Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina.

Mosquitoes are the primary vectors of arthropod-borne pathogens. Aedes aegypti is one of the most widespread mosquito species worldwide, responsible for transmitting diseases such as Dengue, Zika, and Chikungunya, among other medically significant viruses. Characterizing the array of viruses circulating in mosquitoes, particularly in Aedes aegypti, is a crucial tool for detecting and developing novel strategies to prevent arbovirus outbreaks.

View Article and Find Full Text PDF

Background And Objectives: Salivary glands proteins but not glycoconjugates have been previously studied in mosquito vectors of human diseases. Glycoconjugates from salivary gland-derived proteins from human-feeding tick vectors can elicit hypersensitivity reactions which may also occur with mosquito bites. Protein glycoconjugate in salivary glands of the principal arboviral vector Aedes aegypti and the rapidly spreading malaria vector Anopheles stephensi were therefore investigated.

View Article and Find Full Text PDF

Rapid urbanization and migration in Latin America have intensified exposure to insect-borne diseases. Malaria, Chagas disease, yellow fever, and leishmaniasis have historically afflicted the region, while dengue, chikungunya, and Zika have been described and expanded more recently. The increased presence of synanthropic vector species and spread into previously unaffected areas due to urbanization and climate warming have intensified pathogen transmission risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!