New Insights on the Spin Glass Behavior in Ferrites Nanoparticles.

Nanomaterials (Basel)

Faculty of Physics, "Babes Bolyai" University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania.

Published: May 2022

The magnetic properties of nanocrystalline MFeO ferrites with M=Fe, Co, and Zn were investigated. The data support a core-shell model, where the core is ferrimagnetically ordered, and the shell shows a spin glass type behavior. The reduced magnetizations of spin glass components follow an m = (1 - ) field dependence. The b values are strongly correlated with the intensities of exchange interactions. The field dependences of the magnetoresistances of FeO and ZnFeO nanoparticles pellets, experimentally determined, are well described if instead of the core reduced magnetization, commonly used, that of the shell is taken into account. For similar compositions of the nanoparticles, identical values are obtained both from magnetization isotherms and magnetoresistances studies. The half-metallic behavior of spinel FeO based nanoparticles is discussed comparatively with those of double perovskites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146788PMC
http://dx.doi.org/10.3390/nano12101782DOI Listing

Publication Analysis

Top Keywords

spin glass
12
insights spin
4
glass behavior
4
behavior ferrites
4
nanoparticles
4
ferrites nanoparticles
4
nanoparticles magnetic
4
magnetic properties
4
properties nanocrystalline
4
nanocrystalline mfeo
4

Similar Publications

Solution Casting Effect of PMMA-Based Polymer Electrolyte on the Performances of Solid-State Electrochromic Devices.

Polymers (Basel)

January 2025

Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, Cyberjaya 63100, Selangor, Malaysia.

Electrochromic devices (ECDs) are devices that change their optical properties in response to a low applied voltage. These devices typically consist of an electrochromic layer, a transparent conducting substrate, and an electrolyte. The advancement in solid-state ECDs has been driven by the need for improved durability, optical performance, and energy efficiency.

View Article and Find Full Text PDF

The pseudogap phenomena have been a long-standing mystery of the cuprate high-temperature superconductors. The pseudogap in the electron-doped cuprates has been attributed to band folding due to antiferromagnetic (AFM) long-range order or short-range correlation. We performed an angle-resolved photoemission spectroscopy study of the electron-doped cuprates PrLaCeCuO showing spin-glass, disordered AFM behaviors, and superconductivity at low temperatures and, by measurements with fine momentum cuts, found that the gap opens on the unfolded Fermi surface rather than the AFM Brillouin zone boundary.

View Article and Find Full Text PDF

Spin Glass State and Griffiths Phase in van der Waals Ferromagnetic Material FeGeTe.

Nanomaterials (Basel)

December 2024

School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China.

The discovery of two-dimensional (2D) van der Waals ferromagnetic materials opens up new avenues for making devices with high information storage density, ultra-fast response, high integration, and low power consumption. FeGeTe has attracted much attention because of its ferromagnetic transition temperature near room temperature. However, the investigation of its phase transition is rare until now.

View Article and Find Full Text PDF

Spectroscopic properties of Tb-doped and Tb-Ag codoped lithium tetraborate (LTB) glasses with LiBO (or LiO-2BO) composition are investigated and analysed using electron paramagnetic resonance (EPR), optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectra, PL decay kinetics and absolute quantum yield (QY) measurements. PL spectra of the investigated glasses show numerous narrow emission bands corresponding to the D → F (J = 6-0) and D → F (J = 5-3) transitions of Tb (4f) ions. The most intense PL band of Tb ions at 541 nm (D → F transition) is characterised by a lifetime slightly exceeding 2.

View Article and Find Full Text PDF

Investigation of electrochromic performances of multicolor VO devices fabricated at low processing temperature.

Sci Rep

January 2025

Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100, Cyberjaya, Selangor, Malaysia.

In recent decades, poorly insulated windows have increased the energy consumption of heating and cooling systems, thus contributing to excessive carbon dioxide emissions and other related pollution issues. From this perspective, the electrochromic (EC) windows could be a tangible solution as the indoor conditions are highly controllable by these smart devices even at a low applied voltage. Literally, vanadium pentoxide (VO) is a renowned candidate for the EC application due to its multicolor appearance and substantial lithium insertion capacity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!