The investigation of nonlinear optical characteristics resulting from the light-matter interactions of two-dimensional (2D) nano materials has contributed to the extensive use of photonics. In this study, we synthesize a 2D MXene (VC) monolayer nanosheet by the selective etching of Al from VAlC at room temperature and use the nanosecond Z-scan technique with 532 nm to determine the nonlinear optical characters of the Ag@VC hybrid. The z-scan experiment reveals that Ag@VC hybrids usually exhibits saturable absorption owing to the bleaching of the ground state plasma, and the switch from saturable absorption to reverse saturable absorption takes place. The findings demonstrate that Ag@VC has optical nonlinear characters. The quantitative data of the nonlinear absorption of Ag@VC varies with the wavelength and the reverse saturable absorption results from the two-photon absorption, which proves that Ag@VC hybrids have great potential for future ultrathin optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145371 | PMC |
http://dx.doi.org/10.3390/nano12101647 | DOI Listing |
J Comp Physiol B
January 2025
Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
Elasmobranchs are commonly carnivores and are important in energy transfer across marine ecosystems. Despite this, relatively few studies have examined the physiological underpinnings of nutrient acquisition in these animals. Here, we investigated the mechanisms of uptake at the spiral valve intestine for two representative amino acids (-alanine, -leucine) and one representative fatty acid (oleic acid), each common to the diet of a carnivore, the Pacific spiny dogfish (Squalus suckleyi).
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, Changchun 130022, China.
As an emerging two-dimensional (2D) Group-VA material, bismuth selenide (BiSe) exhibits favorable electrical and optical properties. Here, three distinct morphologies of BiSe were obtained from bulk BiSe through electrochemical intercalation exfoliation. And the morphologies of these nanostructures can be tuned by adjusting solvent polarity during exfoliation.
View Article and Find Full Text PDFPharmaceutics
December 2024
Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure 737-0112, Japan.
Background: 5-Aminosalicylic acid (5-ASA), the first-line therapy for ulcerative colitis, is a poorly soluble zwitterionic drug. Unformulated 5-ASA is thought to be extensively absorbed in the small intestine.
Methods: The pH-dependent solubility of 5-ASA in vitro and the intestinal membrane distribution of 5-ASA and its N-acetyl metabolite (AC-5-ASA) after the oral administration of 5-ASA were examined in fed rats.
Materials (Basel)
December 2024
Department of Optical Science and Engineering, Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China.
In recent years, the fabrication of materials with large nonlinear optical coefficients and the investigation of methods to enhance nonlinear optical performance have been in the spotlight. Herein, the bismuth telluride (BiTe) thin films were prepared by radio-frequency magnetron sputtering and annealed in vacuum at various temperatures. The structural and optical properties were characterized and analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and UV/VIS/NIR spectrophotometry.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
Unveiling the nonlinear interactions between terahertz (THz) electromagnetic waves and free carriers in two-dimensional materials is crucial for the development of high-field and high-frequency electronic devices. Herein, we investigate THz nonlinear transport dynamics in a monolayer graphene/MoS heterostructure using time-resolved THz spectroscopy with intense THz pulses as the probe. Following ultrafast photoexcitation, the interfacial charge transfer establishes a nonequilibrium carrier redistribution, leaving free holes in the graphene and trapping electrons in the MoS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!