Ischemic stroke (IS) is a common neurological disorder associated with high disability rates and mortality rates. At present, recombinant tissue plasminogen activator (r-tPA) is the only US(FDA)-approved drug for IS. However, due to the narrow therapeutic window and risk of intracerebral hemorrhage, r-tPA is currently used in less than 5% of stroke patients. Natural compounds have been widely used in the treatment of IS in China and have a wide range of therapeutic effects on IS by regulating multiple targets and signaling pathways. The keywords "ischemia stroke, traditional Chinese Medicine, Chinese herbal medicine, natural compounds" were used to search the relevant literature in PubMed and other databases over the past five years. The results showed that JAK/STAT, NF-κB, MAPK, Notch, Nrf2, and PI3K/Akt are the key pathways, and SIRT1, MMP9, TLR4, HIF-α are the key targets for the natural compounds from traditional Chinese medicine in treating IS. This study aims to update and summarize the signaling pathways and targets of natural compounds in the treatment of IS, and provide a base of information for the future development of effective treatments for IS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148018 | PMC |
http://dx.doi.org/10.3390/molecules27103099 | DOI Listing |
Biomed Pharmacother
January 2025
Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany. Electronic address:
The COVID-19 pandemic has underscored the urgent need for antiviral agents capable of targeting a broad range of coronaviruses, including emerging variants of SARS-CoV-2. While vaccines have been pivotal, the search for drugs that can prevent viral entry into host cells remains crucial, especially against evolving viral forms and other coronaviruses. In this study, we investigated natural products as a source of antiviral agents, focusing on their potential to block the spike protein's receptor-binding domain (RBD).
View Article and Find Full Text PDFNat Commun
January 2025
Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China.
Direct conversion of dinitrogen (N) into N-containing compounds beyond ammonia under ambient conditions remains a longstanding challenge. Herein, we present a Lewis acid-promoted strategy for diverse nitrogen-element bonds formation from N using chromium dinitrogen complex [Cp*(IPrMe)Cr(N)]K (1). With the help of Lewis acids AlMe and BF, we successfully trap a series of fleeting diazenido intermediates and synthesize value-added compounds containing N-B, N-Ge, and N-P bonds with 3 d metals, offering a method for isolating unstable intermediates.
View Article and Find Full Text PDFSci Rep
January 2025
Forestry and Wood Technology Department, Faculty of Agriculture, Alexandria University, Alexandria, 21545, Egypt.
The insecticidal, synergistic, and acetylcholinesterase (AChE) inhibitory effects of plant n-hexane extracts (HEs) were evaluated. The HEs from thyme (Thymus vulgaris L.) leaves, garlic (Allium sativum L.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of General Surgery, the Second Xiang-Ya Hospital, Central South University, Changsha 410011 China. Electronic address:
The transforming growth factor β (TGF-β) type 1 receptor (ALK5) plays a key role in tumor microenvironment. Small-molecule inhibitors of TGFβR1 provides a prospective approach for the treatment of malignant tumors. In this study, a series of 4-((3-(tetrahydro-2H-pyran-4-yl)-1H-pyrazol-4-yl)oxy)quinoline derivatives were identified as novel, potential TGFβR1 inhibitors.
View Article and Find Full Text PDFFood Chem
January 2025
Warsaw University of Life Sciences, Institute of Food Sciences, Department of Food Technology and Assessment, Nowoursynowska St. 166, 02-787 Warsaw, Poland. Electronic address:
The study aimed to evaluate the effect of ultrasound maceration of cold-pressed oils with freeze-dried mullein flowers (Verbascum thapsus L.) on their oxidative stability and chemical composition. After the maceration process, oils' were subjected to their oxidative stability (80-120 °C) and their chemical composition, Moreover, oils kinetics parameters were calculated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!