Therapeutic radiopharmaceuticals have been researched extensively in the last decade as a result of the growing research interest in personalized medicine to improve diagnostic accuracy and intensify intensive therapy while limiting side effects. Radiometal-based drugs are of substantial interest because of their greater versatility for clinical translation compared to non-metal radionuclides. This paper comprehensively discusses various components commonly used as chemical scaffolds to build radiopharmaceutical agents, i.e., radionuclides, pharmacokinetic-modifying linkers, and chelators, whose characteristics are explained and can be used as a guide for the researcher.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143622PMC
http://dx.doi.org/10.3390/molecules27103062DOI Listing

Publication Analysis

Top Keywords

chemical scaffold
4
scaffold theranostic
4
theranostic radiopharmaceuticals
4
radiopharmaceuticals radionuclide
4
radionuclide bifunctional
4
bifunctional chelator
4
chelator pharmacokinetics
4
pharmacokinetics modifying
4
modifying linker
4
linker therapeutic
4

Similar Publications

Preparation of bovine serum albumin nanospheres desolvation: a study of synthesis, characterization, and aging.

Nanoscale

January 2025

School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA.

Serum albumin has myriad uses in biotechnology, but its value as a nanocarrier or nanoplatform for therapeutics is becoming increasingly important, notably with albumin-bound chemotherapeutics. Another emerging field is the fabrication of biopolymeric nanoparticles using albumin as a building block to achieve highly-tunable nonimmunogenic capsules or scaffolds that may be cheaply and reliably produced. The aim of this study was to characterize and optimize the desolvation process used for fabrication of albumin nanoparticles under ambient conditions, studying both glutaraldehyde (GT) and glucose (GLU) as crosslinking agents and the effect of various synthesis conditions including pH, electrolyte concentration, and rate of desolvation on particle size and stability.

View Article and Find Full Text PDF

Metal-organic framework (MOF)-bioactive glass (BG) systems for biomedical applications - A review.

Mater Today Bio

February 2025

Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany.

In recent years, metal-organic frameworks (MOFs) have emerged as promising materials for biomedical applications, owing to their superior chemical versatility, unique textural properties and enhanced mechanical properties. However, their fast and uncontrolled degradation, together with the reduced bioactivity have restricted their clinical potential. To overcome these limitations, MOFs can be synergistically combined with other materials, such as bioactive glasses (BGs), known for their bioactivity and therapeutic ion releasing capabilities.

View Article and Find Full Text PDF

Reactivity of Anomalous Aziridines for Versatile Access to High Fsp Amine Chemical Space.

Acc Chem Res

January 2025

Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States.

ConspectusThe manipulation of strained rings is a powerful strategy for accessing the valuable chemical frameworks present in natural products and active pharmaceutical ingredients. Aziridines, the smallest N-containing heterocycles, have long served as building blocks for constructing more complex amine-containing scaffolds. Traditionally, the reactivity of typical aziridines has been focused on ring-opening by nucleophiles or the formation of 1,3-dipoles.

View Article and Find Full Text PDF

1-Isochromene scaffolds are ubiquitous in natural products and significant bioactive molecules. Although several methods for these molecular syntheses have been developed, reports on the efficient construction of iminated isochromenes are still rather limited. Herein, we report a new Cu(II)-catalyzed annulation and sulfonylimination cascade of α-carbonyl-γ-alkynyl sulfoxonium ylides with sulfamides, enabling direct C-C σ-bond elimination to furnish iminated ()-1-isochromenes in 51-97% yields.

View Article and Find Full Text PDF

N-Branched Tricyclic Guanidines as Novel Melanocortin-3 Receptor Agonists and Melanocortin-4 Receptor Antagonists.

J Med Chem

January 2025

Department of Medicinal Chemistry and the Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States.

The melanocortin receptors are a class of centrally and peripherally expressed G protein-coupled receptors, of which the MC3R and MC4R subtypes are implicated in the regulation of appetite and energy homeostasis and can serve as potential therapeutic targets for disorders such as obesity and cachexia. An unbiased high-throughput mixture-based library screen was implemented to identify novel ligands with an emphasis on the identification of nanomolar-potent agonists of the mouse melanocortin-3 receptor. This screen yielded the discovery of an N-branched tricyclic guanidine scaffold (TPI2408) that contained three nanomolar potent mMC3R agonists and additional compounds that possessed antagonism for the mMC4R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!