colonization of water supply pipes is a significant public health problem. The objective of this work was to evaluate colonization in hotel hot water systems and to investigate the relationship between metal concentrations, piping materials (galvanized iron pipes and plastic pipes), and proliferation. Concentrations of calcium and magnesium ions and the presence of were determined in a total of 108 water samples from the hot water systems of four hotels in Split-Dalmatia County over a 12-month period, and additional data on piping materials were collected. was isolated in 23.1% of all samples-in 28.8% (15/52) of water samples from galvanized iron pipes and in 17.8% (10/56) of samples from plastic pipes. serogroups 2-14 were isolated from all samples. This study found higher prevalence of at higher concentrations of Ca and Mg ions (except for Mg and plastic pipes). The metal parts of the water supply may be important factors in contamination due to the possibility of lime scale or roughness of the pipes. Higher Ca and Mg ion concentrations increased the risk of colonization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147233PMC
http://dx.doi.org/10.3390/microorganisms10051051DOI Listing

Publication Analysis

Top Keywords

plastic pipes
12
water supply
8
hot water
8
water systems
8
piping materials
8
galvanized iron
8
iron pipes
8
water samples
8
pipes
7
water
6

Similar Publications

In vitro evaluation of hypochlorous acid-silver nanoparticle waterline disinfectant for dental unit waterline disinfection.

BMC Chem

January 2025

Nursing Department, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, 430079, China.

Background: This work intended to assess the disinfection efficacy of hypochlorous acid (HA) and silver nanoparticles (AgNP) disinfectants in disinfecting the dental unit waterlines (DUWL) during comprehensive oral treatment and explore their potential applications in the oral medical environment.

Methods: Firstly, AgNP solution was prepared and evaluated through X-ray diffraction (XRD), field emission transmission electron microscope (FE-TEM), and stability tests. Subsequently, 15 dental units were selected and randomly assigned to three groups, each receiving a different disinfection method.

View Article and Find Full Text PDF

Unveiling the role of rubber seals in the generation of decentralized disinfection by-products in chlorinated water distribution systems.

Chemosphere

January 2025

University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. Electronic address:

The degradation of rubber seal (RS), particularly ethylene-propylene-diene (EPDM), in the drinking water networks has been confirmed, yet the role of RS as a disinfection by-product (DBP) precursor remains unknown. This study provides explicit proof of the formation of halogenated disinfection by-products (X-DBPs) from RS in chlorinated drinking water within water supply systems. Over time, exposure to chlorinated water ages RS, releasing high levels of organic compounds, which act as DBP precursors.

View Article and Find Full Text PDF

Aims: We investigated the combined effects of pipe materials and disinfection chemicals on bacterial community and its active RNA fraction in water and biofilms in a pilot-scale premise plumbing system.

Methods And Results: The changes in bacterial communities were studied within four pipelines using copper and cross-linked polyethylene (PEX) pipe with chlorine or chloramine disinfection. The total and active bacterial communities and the presence of opportunistic pathogens (Legionella spp.

View Article and Find Full Text PDF

Release of Bisphenol A and Other Volatile Chemicals from New Epoxy Drinking Water Pipe Liners: The Role of Manufacturing Conditions.

Environ Sci Technol

January 2025

Lyles School of Civil Engineering, Division of Environmental and Ecological Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.

Cured-in-place-pipe (CIPP) technology has begun to be adopted for drinking water pipe repairs, and limited information exists about its drinking water quality impacts. CIPP involves the manufacture of a new plastic pipe inside a buried damaged pipe. In this study, the chemical composition of the raw materials and CIPP water quality impacts were examined.

View Article and Find Full Text PDF

This study investigated lead (Pb) transport through new, biofilm-laden, and calcium carbonate-scaled crosslinked polyethylene (PEX-A) and high-density polyethylene (HDPE) potable water pipes. The research focused on Pb accumulation through short-term exposure incidents (6 h) and Pb release for a longer duration (5 d). A mechanistic investigation of the surface morphology variations of plastic pipes following biofilm and scale formation has been conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!