Plants are continually interacting in different ways and levels with microbes, resulting in direct or indirect effects on plant development and fitness. Many plant-microbe interactions are beneficial and promote plant growth and development, while others have harmful effects and cause plant diseases. Given the permanent and simultaneous contact with beneficial and harmful microbes, plants should avoid being infected by pathogens while promoting mutualistic relationships. The way plants perceive multiple microbes and trigger plant responses suggests a common origin of both types of interaction. Despite the recent advances in this topic, the exploitation of mutualistic relations has still not been fully achieved. The holistic view of different agroecosystem factors, including biotic and abiotic aspects, as well as agricultural practices, must also be considered. This approach could pave the way for a new green revolution that will allow providing food to a growing human population in the context of threat such as that resulting from climate change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144042 | PMC |
http://dx.doi.org/10.3390/microorganisms10051048 | DOI Listing |
Int J Mol Sci
December 2024
State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
, which contains abundant pharmacologically active coumarins, is usually used as a rotation crop and green manure worldwide. Abscisic acid (ABA) is a crucial plant hormone that plays an important role in plant stress responses. There is a paucity of information about the ABA signaling pathway and its regulatory network in .
View Article and Find Full Text PDFHeliyon
December 2024
Microelement Research Center of Huazhong Agricultural University, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei Province, 430070, China.
Chinese milk vetch (CMV) is widely recognized as the leading leguminous green manure utilized in the rice-green manure rotation system throughout southern China. While bacteria that form symbiotic relationships with CMV are responsible for fixing a significant portion of nitrogen (N) within agroecosystems. diazotrophic organisms play an essential role in the N cycle and enhance the pool of N readily accessible to plants.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
Restricting the growth of sodium (Na) dendrites at the atomic level is the premise to enable both the stability and safety of sodium metal batteries (SMBs). Here, the universal synthesis of the fourth main group element (Sn, Ge, Pb) as single metal atoms anchored on graphene (Sn, Ge, Pb SAs/G) with sp hybridization for dendrite-free sodium metal anode is reported. The in situ real-time observation of Na growth on Sn SAs/G uncoils a kinetically uniform planar deposition at the atomic level for substantially suppressing the dendrite growth.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
Aggregation-induced emission (AIE)-active fluorescent hydrogel materials have found extensive applications in soft robotics, wearable electronics, information encryption, and biomedicine. Nevertheless, it continues to be difficult to create hydrogels that are both highly luminescent and possess strong mechanical capabilities. This study introduces a combined approach of prestretching and solvent exchange to create anisotropic luminous hydrogels made of poly(methacrylic acid-methacrylamide).
View Article and Find Full Text PDFLight Sci Appl
January 2025
Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Metallurgical and Materials Engineering, Glass Research and Development Laboratory, Istanbul, 34220, Türkiye.
Three-dimensional (3D) imaging technology holds immense potential across various high-tech applications; however, current display technologies are hindered by limitations such as restricted viewing angles, cumbersome headgear, and limited multi-user accessibility. To address these challenges, researchers are actively exploring new materials and techniques for 3D imaging. Laser-based volumetric displays (VDs) offer a promising solution; nonetheless, existing screen materials fall short in meeting key requirements for long-term durability, full-color operation, and scalability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!