Cyanobacteria-mediated wastewater remediation is an economical, efficient, and eco-friendly technology. The present work deals with the bioaccumulation performance of (Spirulina) grown for four cycles in a medium containing nickel mono- and polymetallic synthetic effluents. The metal uptake by spirulina biomass was evaluated using neutron activation analysis. The effects of effluents on biomass production, protein, and phycobiliprotein content were assessed. Metal accumulation in the biomass depended on the effluent composition and metal ion concentrations. Nickel accumulation in the biomass was directly proportional to its concentration in effluents, and maximum uptake (1310 mg/kg) was attained in the Ni/Cr/Fe system. In the same system, biomass accumulated 110 times more chromium and 4.7 times more iron than control. The highest accumulation of copper (2870 mg/kg) was achieved in the Ni/Cu/Zn/Mo system and zinc (1860 mg/kg)-in the Ni/Cu/Zn/Sr system. In biomass grown in the media loaded with nickel and also chromium, iron, copper, strontium, zinc, and molybdenum, a decrease in productivity (on average by 10%) during the first cycle of cultivation and moderate reduction of protein content (by 15-27%) was observed. The presence of metals in the cultivation media inhibited phycobiliprotein synthesis, especially of phycocyanin, and promoted the synthesis of allophycocyanin. The maximum reduction of phycocyanin content was 77%, and the increase of allophycocyanin content-by 45%. may be deemed as bioremediation of nickel-polluted wastewaters of complex composition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147461PMC
http://dx.doi.org/10.3390/microorganisms10051041DOI Listing

Publication Analysis

Top Keywords

metal accumulation
8
nickel mono-
8
mono- polymetallic
8
polymetallic synthetic
8
synthetic effluents
8
accumulation biomass
8
system biomass
8
biomass
6
assessment metal
4
accumulation
4

Similar Publications

Seed bacterization with siderophore-producing bacteria: a strategy to enhance growth and alkaloid content in Catharanthus roseus.

World J Microbiol Biotechnol

January 2025

Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India.

Catharanthus roseus is a medicinal plant widely known for producing monoterpenoid indole alkaloids (MIAs), including therapeutic compounds such as vinblastine and vincristine, which are crucial for cancer treatment. However, the naturally low concentration of these alkaloids in plant tissues poses a significant challenge for large-scale production. This study explores the application of siderophore-producing bacteria for seed bacterization of Catharanthus roseus to enhance the production of MIAs, including vindoline, catharanthine, and vinblastine.

View Article and Find Full Text PDF

Health Risk of Heavy Metal and Implication for Ecological Threat in Soils Weathered from the Black Shale.

Bull Environ Contam Toxicol

January 2025

Key Laboratory of Surficial Geochemistry, Ministry of Education School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China.

Heavy metals were analyzed in rhizosphere soils and rice grains collected from typical black shale areas. The concentrations of As, Cd, Cu, and Zn in the rhizosphere soil exceeded the current soil environmental quality standards. Cd exhibited the highest bioaccumulation capacity, with 45% of rice grains exceeding food safety limit.

View Article and Find Full Text PDF

The utilisation of implantable medical devices has become safer and more prevalent since the establishment of sterilisation methods and techniques a century ago. Nevertheless, device-associated infections remain a significant and growing concern, particularly in light of the continued rise in the number of medical device implantations. This underscores the imperative for the development of efficacious prevention and treatment strategies for device-associated infections, as well as further investigation into the design of innovative antibacterial surfaces for medical device applications.

View Article and Find Full Text PDF

A NAC transcription factor NAC50 regulates Fe reutilization in Arabidopsis under Fe-deficient condition.

Physiol Plant

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China.

A lack of iron (Fe) inhibits the growth and development of plants, leading to reduced agricultural yields and quality. In the last ten years, numerous studies have focused on the induction of Fe uptake and translocation under Fe deficiency, but the regulatory mechanisms governing Fe reutilization within plants are still not well understood. Here, we demonstrated the involvement of the NAM/ATAF1/2/CUC2 (NAC) transcription factor NAC50 in response to Fe shortage.

View Article and Find Full Text PDF

Urban mineral resources, with their significant recycling potential, have increasingly accumulated worldwide and become an important source for extracting valuable metals, particularly critical rare dispersed metals (CRDMs) such as gallium, germanium, and indium. As the electronics industry continues to grow rapidly, the demand for CRDMs is rising. However, CRDMs in primary mineral resources are often found in small, dispersed concentrations, making extraction challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!