Corrosion of an AZ31B Magnesium Alloy by Sulfate-Reducing Prokaryotes in a Mudflat Environment.

Microorganisms

CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

Published: April 2022

To study the abnormal failure of magnesium anodes for buried pipelines in marine engineering in the unique environment of mudflats, a strain of a sulfate-reducing prokaryote (SRP) was isolated from pipe-laying soil, and identified as sp. HQM3. Weight-loss test, electrochemical measurements, SEM, EDS, XRD, and CLSM techniques were used to study the effect of corrosion on the AZ31B magnesium alloy. Under the influence of SRP, the magnesium alloy corroded severely at rates up to 1.31 mm/year in the mudflat environment. SRP accelerated corrosion by 0.3mm/year. Pitting occurred on the samples in both abiotic and biotic systems. The pitting depth reached 163.47 μm in the biotic system after 14 days. The main composition of a petal-like corrosion product was Mg(OH). The results show that a mudflat environment can lead to an accelerated corrosion of magnesium alloys.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145540PMC
http://dx.doi.org/10.3390/microorganisms10050839DOI Listing

Publication Analysis

Top Keywords

magnesium alloy
12
mudflat environment
12
corrosion az31b
8
az31b magnesium
8
accelerated corrosion
8
corrosion
5
magnesium
5
alloy sulfate-reducing
4
sulfate-reducing prokaryotes
4
prokaryotes mudflat
4

Similar Publications

In situ bone regeneration and vertical bone augmentation have been huge problems in clinical practice, always imposing a significant economic burden and causing patient suffering. Herein, MgZnYNd magnesium alloy rod implantation in mouse femur resulted in substantial subperiosteal new bone formation, with osteoimmunomodulation playing a pivotal role. Abundant macrophages were attracted to the subperiosteal new bone region and proved to be the most important regulation cells for bone regeneration.

View Article and Find Full Text PDF

Microstructure and Mechanical Properties of Mg-8Li-3Al-0.3Si Alloy Deformed Through a Combination of Back-Extrusion and Spinning Process.

Materials (Basel)

January 2025

Shanxi Key Laboratory of Magnesium-Based Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.

In this work, the Mg-8Li-3Al-0.3Si (LAS830) alloy was prepared by the vacuum melting method. The as-cast alloy was subjected to backward extrusion at 250 °C and then spun at 250 °C.

View Article and Find Full Text PDF

Laser shock peening (LSP) is an effective method for enhancing the fatigue life and mechanical properties of Ti alloys. However, there is limited research on the effects of LSP on crystal structure and dislocation characteristics. In this study, Ti-6Al-4V alloy was subjected to laser shock peening with varying laser power levels.

View Article and Find Full Text PDF

Study on Synergistically Improving Corrosion Resistance of Microarc Oxidation Coating on Magnesium Alloy by Loading of Sodium Tungstate and Silane Treatment.

Materials (Basel)

January 2025

Qinghai Provincial Key Laboratory of Nanomaterials and Technology, School of Chemistry and Materials Science, Qinghai Minzu University, Xining 810007, China.

Sodium tungstate (NaWO) was filled into the micropores and onto the surface of a magnesium alloy microarc oxidation (MAO) coating by means of vacuum impregnation. Subsequently, the coating was sealed through silane treatment to synergistically boost its corrosion resistance. The phase composition of the coating was inspected using XRD.

View Article and Find Full Text PDF

Microstructure and Mechanical Properties of High-Pressure Die-Casting Mg-Al-RE Alloys with Minor Ca Addition.

Materials (Basel)

January 2025

Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, 5988# Renmin Street, Changchun 130025, China.

With the increasing demand for magnesium (Mg) alloys with high strength and good ductility, this study explores high-pressure die-cast (HPDC) Mg-6Al-2RE (AE62), Mg-8Al-2RE (AE82) and Mg-8Al-2RE-0.2Ca (AEX820) alloys (wt. %).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!