A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Simulation Design of Surface Acoustic Wave Sensor Based on Langasite Coplanar Integration with Multiple Parameters. | LitMetric

Simulation Design of Surface Acoustic Wave Sensor Based on Langasite Coplanar Integration with Multiple Parameters.

Micromachines (Basel)

State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China.

Published: April 2022

In the harsh environment of high temperature and high rotation, a single parameter is difficult to satisfy the multi-parameter test requirements of aerospace metallurgy. Therefore, a multi-parameter coplanar integrated surface acoustic wave (SAW) sensor based on Langasite (LGS) is proposed. In this paper, the optimal cut for different measurement parameters is analyzed, and the optimal cut to temperature, pressure and vibration are obtained. The simulation results show that (0°, 138.5°, 25°) LGS has superior second-order temperature sensitivity, the edge of the rectangular sealed cavity is more suitable for pressure sensors, and the optimal cut is (0°, 138.5°, 30°). The stress of the vibration sensor cantilever beam is mainly concentrated on the edge of the fixed end, and the optimal cut is (0°, 138.5°, 35°). Based on the optimal sensitive tangential direction of each sensitive element and the symmetry of the Langasite wafer, the reasonable layout of the coplanar integrated structure with the three parameters of temperature, pressure and vibration is determined. Moreover, according to the optimal orientation selection and reasonable structure layout of each parameter, combined with frequency separation rules, the parameters of interdigital electrode were determined, and the idea of multi-parameter integrated design was simulated and verified.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9144200PMC
http://dx.doi.org/10.3390/mi13050705DOI Listing

Publication Analysis

Top Keywords

optimal cut
16
0° 1385°
12
surface acoustic
8
acoustic wave
8
wave sensor
8
sensor based
8
based langasite
8
coplanar integrated
8
temperature pressure
8
pressure vibration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!