Digital integrated circuits play an important role in the development of new information technologies and support Industry 4.0 from a hardware point of view. There is great pressure on electronics companies to reduce the time-to-market for product development as much as possible. The most time-consuming stage in hardware development is functional verification. As a result, many industry and academic stakeholders are investing in automating this crucial step in electronics production. The present work aims to automate the functional verification process by means of genetic algorithms that are used for generating the relevant input stimuli for full simulation of digital design behavior. Two important aspects are pursued throughout the current work: the implementation of genetic algorithms must be time-worthy compared to the application of the classical constrained-driven generation and the verification process must be implemented using tools accessible to a wide range of practitioners. It is demonstrated that for complex designs, functional verification powered by the use of genetic algorithms can go beyond the classical method of performing verification, which is based on constrained-random stimulus generation. The currently proposed methods were able to generate several sets of highly performing stimuli compared to the constraint-random stimulus generation method, in a ratio ranging from 57:1 to 205:1. The performance of the proposed approaches is comparable to that of the well-known NSGA-II and SPEA2 algorithms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146489 | PMC |
http://dx.doi.org/10.3390/mi13050691 | DOI Listing |
Introduction: This article presents a verification of the factor structure and validation of the Questionnaire of Achievement of Developmental Task (QADT), designed to measure children's social expectations in early childhood. Three tasks, important from the point of view of both children's functioning at a given life stage and preparation for the next developmental phase, were selected. These are school skills, cooperation with others and a sense of competence.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
is a prevalent fungal pathogen responsible for infections in humans. As described recently, nanometer-sized extracellular vesicles (EVs) produced by play a crucial role in the pathogenesis of infection by facilitating host inflammatory responses and intercellular communication. This study investigates the functional properties of EVs released by biofilms formed by two strains-3147 (ATCC 10231) and SC5314-in eliciting host responses.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China.
Background: Different doses of radiotherapy (RT) exert diverse effects on tumor immunity, although the precise irradiation method remains unknown. This study sought to elucidate the influence of combining different doses of RT with immune checkpoint inhibitors (ICIs) on the infiltration of CD8T cells within tumors, thereby augmenting the anti-tumor response.
Methods: Constructing a mouse model featuring bilateral lung cancer tumors subjected to high and low dose irradiation, the analysis of RNA transcriptome sequencing data and immunohistochemical validation for tumors exposed to various dosages guided the selection of the optimal low-dose irradiation scheme.
Photodiagnosis Photodyn Ther
January 2025
Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China. Electronic address:
Purpose: Bietti crystalline dystrophy (BCD) is a rare retinal dystrophy characterized by progressive visual impairment. This study aimed to evaluate changes in retinal and choroidal vessels and blood flow in BCD patients using swept-source optical coherence tomography angiography (SS-OCTA) and to investigate potential parameters associated with visual function.
Methods: This cross-sectional study included 166 eyes from 86 clinically diagnosed BCD patients, classified into three disease stages based on Yuzawa's classification.
J Phys Chem A
January 2025
Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
Symmetry breaking is ubiquitous in chemical transformations and affects various physicochemical properties of materials and molecules; Jahn-Teller (JT) distortion of hexa-coordinated transition-metal-ligand complexes falls within this paradigm. An uneven occupancy of degenerate 3d-orbitals forces the complex to adopt an axially elongated or compressed geometry, lowering the symmetry of the system and lifting the degeneracy. Coordination complexes of Cu are known to exhibit axial elongation, while compression is far less common, although this may be due to the lack of rigorous experimental verification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!