A major challenge in the clinical management of patients with mesial temporal lobe epilepsy (MTLE) is identifying those who do not respond to antiseizure medication (ASM), allowing for the timely pursuit of alternative treatments such as epilepsy surgery. Here, we investigated changes in plasma metabolites as biomarkers of disease in patients with MTLE. Furthermore, we used the metabolomics data to gain insights into the mechanisms underlying MTLE and response to ASM. We performed an untargeted metabolomic method using magnetic resonance spectroscopy and multi- and univariate statistical analyses to compare data obtained from plasma samples of 28 patients with MTLE compared to 28 controls. The patients were further divided according to response to ASM for a supplementary and preliminary comparison: 20 patients were refractory to treatment, and eight were responsive to ASM. We only included patients using carbamazepine in combination with clobazam. We analyzed the group of patients and controls and found that the profiles of glucose (p = 0.01), saturated lipids (p = 0.0002), isoleucine (p = 0.0001), β-hydroxybutyrate (p = 0.0003), and proline (p = 0.02) were different in patients compared to controls (p < 0.05). In addition, we found some suggestive metabolites (without enough predictability) by multivariate analysis (VIP scores > 2), such as lipoproteins, lactate, glucose, unsaturated lipids, isoleucine, and proline, that might be relevant to the process of pharmacoresistance in the comparison between patients with refractory and responsive MTLE. The identified metabolites for the comparison between MTLE patients and controls were linked to different biological pathways related to cell-energy metabolism and pathways related to inflammatory processes and the modulation of neurotransmitter release and activity in MTLE. In conclusion, in addition to insights into the mechanisms underlying MTLE, our results suggest that plasma metabolites may be used as disease biomarkers. These findings warrant further studies exploring the clinical use of metabolites to assist in decision-making when treating patients with MTLE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148034PMC
http://dx.doi.org/10.3390/metabo12050446DOI Listing

Publication Analysis

Top Keywords

patients
12
patients mtle
12
mtle
9
metabolites biomarkers
8
biomarkers disease
8
disease patients
8
patients mesial
8
mesial temporal
8
temporal lobe
8
lobe epilepsy
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Suven Life Sciences, Hyderabad, Telangana, India.

Background: Alzheimer's disease (AD) agitation is a distressing neuropsychiatric symptom characterized by excessive motor activity, verbal aggression, or physical aggression. Agitation is one of the causes of caregiver distress, increased morbidity and mortality, and early institutionalization in patients with AD. Current medications used for the management of agitation have modest efficacy and have substantial side effects.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Biogen, Cambridge, MA, USA.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the formation of amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) composed of tau aggregates. Research in animal models has generated hypotheses on the underlying mechanisms of the interaction between Aβ and tau pathology. In support of this interaction, results from clinical trials have shown that treatment with anti-Aβ monoclonal antibodies (mAbs) affects tau pathology.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Sage Bionetworks, Seattle, WA, USA.

Background: There is an urgent need for new therapeutic and diagnostic targets for Alzheimer's disease (AD). Dementia afflicts roughly 55 million individuals worldwide, and the prevalence is increasing with longer lifespans and the absence of preventive therapies. Given the demonstrated heterogeneity of Alzheimer's disease in biological and genetic components, it is critical to identify new therapeutic approaches.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Fundacion Neuropolis, Zaragoza, Zaragoza, Spain.

Background: The therapeutic management of dementia with Lewy bodies (LBD) is a challenge given the high sensitivity to drugs in this disease. This is particularly sensitive with regard to the management of parkinsonism. In particular, treatment of motor symptoms with levodopa or dopaminergic agonists poses a risk of worsening cognitive and behavioral symptoms.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Clario, Philadelphia, PA, USA.

Background: Clinical outcome assessments (COAs) are an important part of clinical trials to measure what is meaningful to patients and caregivers. This study aimed to examine trends in Alzheimer's Disease (AD) COAs used in clinical trials, given the FDA's recent emphasis on patient-focused drug development and early AD.

Method: ClinicalTrials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!