The broad distribution of voltage-gated potassium channels (VGKCs) in the human body makes them a critical component for the study of physiological and pathological function. Within the KCNQ family of VGKCs, these aqueous conduits serve an array of critical roles in homeostasis, especially in neural tissue. Moreover, the greater emphasis on genomic identification in the past century has led to a growth in literature on the role of the ion channels in pathological disease as well. Despite this, there is a need to consolidate the updated findings regarding both the pharmacotherapeutic and pathological roles of KCNQ channels, especially regarding neural plasticity and motor disorders which have the largest body of literature on this channel. Specifically, KCNQ channels serve a remarkable role in modulating the synaptic efficiency required to create appropriate plasticity in the brain. This role can serve as a foundation for clinical approaches to chronic pain. Additionally, KCNQ channels in motor disorders have been utilized as a direction for contemporary pharmacotherapeutic developments due to the muscarinic properties of this channel. The aim of this study is to provide a contemporary review of the behavior of these channels in neural plasticity and motor disorders. Upon review, the behavior of these channels is largely dependent on the physiological role that KCNQ modulatory factors (i.e., pharmacotherapeutic options) serve in pathological diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143857 | PMC |
http://dx.doi.org/10.3390/membranes12050499 | DOI Listing |
Nat Chem Biol
January 2025
Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
Voltage-gated ion channels (VGICs) are crucial targets for neuropsychiatric therapeutics owing to their role in controlling neuronal excitability and the established link between their dysfunction and neurological diseases, highlighting the importance of identifying modulators with distinct mechanisms. Here we report two small-molecule modulators with the same chemical scaffold, Ebio2 and Ebio3, targeting a potassium channel KCNQ2, with opposite effects: Ebio2 acts as a potent activator, whereas Ebio3 serves as a potent and selective inhibitor. Guided by cryogenic electron microscopy, patch-clamp recordings and molecular dynamics simulations, we reveal that Ebio3 attaches to the outside of the inner gate, employing a unique non-blocking inhibitory mechanism that directly squeezes the S6 pore helix to inactivate the KCNQ2 channel.
View Article and Find Full Text PDFFront Neurol
November 2024
Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
Expert Opin Drug Discov
January 2025
Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany.
Elife
December 2024
Department of Physiology and Biophysics, University of Washington, Seattle, United States.
Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia.
View Article and Find Full Text PDFNeurochem Res
November 2024
Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, Russia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!