The mechanisms of stereoselectivity of the interaction of chiral drugs with active sites of enzymes and cell receptors attract significant attention. The first reason is the difference in therapeutic activity of the enantiomers of the common drugs. Another reason is the interest in the role of chiral inversion of amino acids involved in various peptides in the development of many diseases including Alzheimer's, Parkinson's, type II diabetes, and a number of other pathological conditions. In our study we use elementary chemical process-electron transfer (ET) to simulate individual stages of ligand-receptor and enzyme-substrate interactions. In particular, previous studies of photoinduced ET in chiral donor-acceptor dyads consisting of the nonsteroidal anti-inflammatory drug (R/S)-ketoprofen and (L)-tryptophan show the stereo and spin selectivity of ET in diastereomers. The present study is devoted to the interaction of (S)-ketoprofen with L- and D-enantiomers of tryptophan in homogeneous aqueous solution and in phospholipid membranes. The study was done using the NMR technique and molecular modeling. These approaches confirm efficient penetration of ketoprofen into the lipid bilayer and binding with tryptophan molecule. The short-lived paramagnetic intermediates formed during the photoinduced ET from electron donor tryptophan to ketoprofen have been detected using the chemically induced dynamic nuclear polarization (CIDNP) technique. It was found that S-ketoprofen interacts stereoselectively with tryptophan enantiomers in the lipid membrane. The formation of the ketyl radical of ketoprofen under irradiation leads to the oxidation of membrane lipids and may be the cause of ketoprofen phototoxicity. However, in contrast to a homogeneous solution in phosphate buffer saline, where the amino acid tryptophan accelerates the photodecomposition of KP due to intramolecular hydrogen transfer, tryptophan in a lipid membrane significantly reduces the rate of photodegradation due to a reversible electron (or hydrogen) transfer reaction. The stereoselectivity in the rate of KP and lipids decomposition under UV irradiation of S-ketoprofen in the presence of tryptophan enantiomers in lipid bilayer has been detected.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147405PMC
http://dx.doi.org/10.3390/membranes12050460DOI Listing

Publication Analysis

Top Keywords

stereoselectivity interaction
8
nonsteroidal anti-inflammatory
8
anti-inflammatory drug
8
phospholipid membranes
8
lipid bilayer
8
tryptophan enantiomers
8
enantiomers lipid
8
lipid membrane
8
hydrogen transfer
8
tryptophan
7

Similar Publications

DFT Investigation of the Stereoselectivity of the Lewis-Acid-Catalyzed Diels-Alder Reaction between 2,5-Dimethylfuran and Acrolein.

ACS Omega

January 2025

Laboratory of Theoretical Chemistry, Theoretical and Structural Physical Chemistry Unit, Namur Institute of Structured Matter (NISM), University of Namur, rue de Bruxelles, 61, B-5000 Namur, Belgium.

Density functional theory (DFT) has been enacted to study the Diels-Alder reaction between 2,5-dimethylfuran (2,5-DMF), a direct product of biomass transformation, and acrolein and to analyze its thermodynamics, kinetics, and mechanism when catalyzed by a Lewis acid (LA), in comparison to the uncatalyzed reaction. The uncatalyzed reaction occurs via a typical one-step asynchronous process, corresponding to a normal electron demand (NED) mechanism, where acrolein is an electrophile whereas 2,5-DMF is a nucleophile. The small endo selectivity in solvents of low dielectric constants is replaced by a small exo selectivity in solvents with larger dielectric constants, such as DMSO.

View Article and Find Full Text PDF

Computer-Aided Drug Design (CADD) entails designing molecules that could potentially interact with a specific biomolecular target and promising their potential binding. The stereo- arrangement and stereo-selectivity of small molecules (SMs)--based chemotherapeutic agents significantly influence their therapeutic potential and enhance their therapeutic advantages. CADD has been a well-established field for decades, but recent years have observed a significant shift toward acceptance of computational approaches in both academia and the pharmaceutical industry.

View Article and Find Full Text PDF

Computational Insights into "Lone Pair-Lone Pair Interaction-Controlled" Isomerization in the Asymmetric Total Syntheses of (+)-3-()-Laureatin and (+)-3-()-Isolaureatin.

J Org Chem

January 2025

Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Described herein is our computational study to rationalize the stereoselective epimerization of α,α'--disubstituted oxolane and oxetane ketones and to the corresponding α,α'- ketones and reported in our previous total syntheses of (+)-3-()-isolaureatin () and (+)-3-()-laureatin (). Density functional theory (DFT) calculations using appropriately truncated models revealed that the α,α'- ketones are more stable than the α,α'- ketones, in very good agreement with experimental results. The computational results showed that the isomer with a longer interatomic distance between the two ring oxygen atoms was lower in energy, which suggested the presence of repulsive interactions between those oxygen atoms.

View Article and Find Full Text PDF

Structure-guided mining of stereoselective reductive aminases for biocatalytic stereodivergent synthesis of chiral piperidinamine and derivatives.

J Biotechnol

January 2025

Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. Electronic address:

Chiral azacyclic amine derivatives occupy a vital role of nitrogen-containing compounds, due to serve as foundational motifs in numerous pharmaceuticals and bioactive substances. Novel complementary enantioselective reductive aminases IRED9 and IRED11 were unveiled through comprehensive gene mining from Streptomyces viridochromogenes and Micromonospora echinaurantiaca, respectively, which both demonstrated enantiomeric excess (ee) values and conversion ratios of up to 99 % towards N-Boc-3-pyridinone (NBPO) and cyclopropylamine. IRED9 exhibited the highest activity at pH 8.

View Article and Find Full Text PDF

A Hexavalent Tellurium-Based Chalcogen Bonding Catalysis Platform: High Catalytic Activity and Controlling of Selectivity.

J Am Chem Soc

January 2025

School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan 250100, P. R. China.

Herein, we describe a hexavalent tellurium-based chalcogen bonding catalysis platform capable of addressing reactivity and selectivity issues. This research demonstrates that hexavalent tellurium salts can serve as a class of highly active chalcogen bonding catalysts for the first time. The tellurium centers in these hexavalent catalysts have only one exposed interaction site, thus providing a favorable condition for the controlling of reaction selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!