Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Modifying lithium niobate cation composition improves not only the functional properties of the acousto- and optoelectronic materials as well as ferroelectrics but elevates the protonic transfer in LiNbO3-based electrolytes of the solid oxide electrochemical devices. Molten chlorides and other thermally stable salts are not considered practically as the precursors to synthesize and modify oxide compounds. This article presents and discusses the results of an experimental study of the full or partial heterovalent substitution of lithium ion in nanosized LiNbO3 powders and in the surface layer of LiNbO3 single crystal using molten salt mixtures containing calcium, lead, and rare-earth metals (REM) chlorides as the precursors. The special features of heterovalent ion exchange in chloride melts are revealed such as hetero-epitaxial cation exchange at the interface PbCl2-containing melt/lithium niobate single crystal; the formation of Li(1−x) Ca(x/2)V(x/2)Li+ NbO3 solid solutions with cation vacancies as an intermediate product of the reaction of heterovalent substitution of lithium ion by calcium in LiNbO3 powders; the formation of lanthanide orthoniobates with a tetragonal crystal structure such as scheelite as the result of lithium niobate interaction with trichlorides of rare-earth elements. It is shown that the fundamental properties of ion-modifiers (ion radius, nominal charge), temperature, and duration of isothermal treatment determine the products’ chemical composition and the rate of heterovalent substitution of Li+-ion in lithium niobate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9142969 | PMC |
http://dx.doi.org/10.3390/ma15103551 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!