The Effects of Flexibility on dsDNA-dsDNA Interactions.

Life (Basel)

Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.

Published: May 2022

A detailed understanding of the physical mechanism of ion-mediated dsDNA interactions is important in biological functions such as DNA packaging and homologous pairing. We report the potential of mean force (PMF) or the effective solvent mediated interactions between two parallel identical dsDNAs as a function of interhelical separation in 0.15 M NaCl solution. Here, we study the influence of flexibility of dsDNAs on the effective interactions by comparing PMFs between rigid models and flexible ones. The role of flexibility of dsDNA pairs in their association is elucidated by studying the energetic properties of Na ions as well as the fluctuations of ions around dsDNAs. The introduction of flexibility of dsDNAs softens the vdW contact wall and induces more counterion fluctuations around dsDNAs. In addition, flexibility facilitates the Na ions dynamics affecting their distribution. The results quantify the extent of attraction influenced by dsDNA flexibility and further emphasize the importance of non-continuum solvation approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147707PMC
http://dx.doi.org/10.3390/life12050699DOI Listing

Publication Analysis

Top Keywords

flexibility dsdnas
8
dsdnas
5
flexibility
5
effects flexibility
4
flexibility dsdna-dsdna
4
interactions
4
dsdna-dsdna interactions
4
interactions detailed
4
detailed understanding
4
understanding physical
4

Similar Publications

dsDAP: An efficient method for high-abundance DNA-encoded library construction in mammalian cells.

Int J Biol Macromol

January 2025

Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China. Electronic address:

DNA-encoded libraries are invaluable tools for high-throughput screening and functional genomics studies. However, constructing high-abundance libraries in mammalian cells remains challenging. Here, we present dsDNA-assembly-PCR (dsDAP), a novel Gibson-assembly-PCR strategy for creating DNA-encoded libraries, offering improved flexibility and efficiency over previous methods.

View Article and Find Full Text PDF

As the resistance of to the existing antimalarials increases, there is a crucial need to expand the antimalarial drug pipeline. We recently identified potent antimalarial compounds, namely harmiquins, hybrids derived from the β-carboline alkaloid harmine and 4-amino-7-chloroquinoline, a key structural motif of chloroquine (CQ). To further explore the structure-activity relationship, we synthesised 13 novel hybrid compounds at the position -9 of the β-carboline ring and evaluated their efficacy in vitro against 3D7 and Dd2 strains (CQ sensitive and multi-drug resistant, respectively).

View Article and Find Full Text PDF

Thermodynamic parameters obtained for the formation of the Cas12a-RNA/DNA complex.

Biochem Biophys Res Commun

January 2025

Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090, Novosibirsk, Russia; Novosibirsk State University, 630090, Novosibirsk, Russia. Electronic address:

The thermodynamics of interactions between Cas12a, RNA, and DNA are important to understanding the molecular mechanisms governing CRISPR-Cas12a's specificity and function. In this study, we employed isothermal titration calorimetry (ITC) and molecular dynamics (MD) simulations to investigate the binding properties and energetic contributions of Cas12a-crRNA complexes with single-stranded (ssDNA) and double-stranded (dsDNA) DNA substrates. ITC analyses revealed significant thermal effects during the interaction of Cas12a-crRNA with ssDNA but no detectable effects with dsDNA.

View Article and Find Full Text PDF

The use of adeno-associated viruses (AAVs) as donors for homology-directed repair (HDR)-mediated genome engineering is limited by safety issues, manufacturing constraints and restricted packaging limits. Non-viral targeted genetic knock-ins rely primarily on double-stranded DNA (dsDNA) and linear single-stranded DNA (lssDNA) donors. dsDNA is known to have low efficiency and high cytotoxicity, while lssDNA is challenging for scaled manufacture.

View Article and Find Full Text PDF

Stabilization of a single-stranded DNA of adeno-associated virus by inverted terminal repeats.

Sci Rep

November 2024

Graduate School of Science, Technology, and Innovation, Kobe University, 7-1-49 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047, Japan.

Parvoviruses have evolved to possess a linear single-stranded DNA (ssDNA) genome ranging from 4 to 6.3 kb. Adeno-associated virus (AAV), a member of the Parvoviridae family, contains approximately 5 kb of linear ssDNA within its capsid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!