Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The early prediction of epileptic seizures is important to provide appropriate treatment because it can notify clinicians in advance. Various EEG-based machine learning techniques have been used for automatic seizure classification based on subject-specific paradigms. However, because subject-specific models tend to perform poorly on new patient data, a generalized model with a cross-patient paradigm is necessary for building a robust seizure diagnosis system. In this study, we proposed a generalized model that combines one-dimensional convolutional layers (1D CNN), gated recurrent unit (GRU) layers, and attention mechanisms to classify preictal and interictal phases. When we trained this model with ten minutes of preictal data, the average accuracy over eight patients was 82.86%, with 80% sensitivity and 85.5% precision, outperforming other state-of-the-art models. In addition, we proposed a novel application of attention mechanisms for channel selection. The personalized model using three channels with the highest attention score from the generalized model performed better than when using the smallest attention score. Based on these results, we proposed a model for generalized seizure predictors and a seizure-monitoring system with a minimized number of EEG channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147609 | PMC |
http://dx.doi.org/10.3390/jpm12050763 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!