Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Advances in clinical genomic sequencing capabilities, including reduced costs and knowledge gains, have bolstered the consideration of genomic screening in healthy adult populations. Yet, little is known about the existing landscape of genomic screening programs in the United States. It can be difficult to find information on current implementation efforts and best practices, particularly in light of critical questions about equity, cost, and benefit.
Methods: In 2020, we searched publicly available information on the Internet and the scientific literature to identify programs and collect information, including: setting, program funding, targeted population, test offered, and patient cost. Program representatives were contacted throughout 2020 and 2021 to clarify, update, and supplement the publicly available information.
Results: Twelve programs were identified. Information was available on key program features, such as setting, genes tested, and target populations. Data on costs, outcomes, or long-term sustainability plans were not always available. Most programs offered testing at no or significantly reduced cost due to generous pilot funding, although the sustainability of these programs remains unknown. Gene testing lists were diverse, ranging from 11 genes (CDC tier 1 genes) to 59 genes (ACMG secondary findings list v.2) to broad exome and genome sequencing. This diversity presents challenges for harmonized data collection and assessment of program outcomes.
Conclusions: Early programs are exploring the logistics and utility of population genomic screening in various settings. Coordinated efforts are needed to take advantage of data collected about uptake, infrastructure, and intervention outcomes to inform future research, evaluation, and program development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145687 | PMC |
http://dx.doi.org/10.3390/jpm12050692 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!