Equine osteoarthritis (OA) leads to cartilage degradation with impaired animal well-being, premature cessation of sport activity, and financial losses. Mesenchymal stem cell (MSC)-based therapies are promising for cartilage repair, but face limitations inherent to the cell itself. Soluble mediators and extracellular vesicles (EVs) secreted by MSCs are the alternatives to overcome those limitations while preserving MSC restorative properties. The effect of equine bone marrow MSC secretome on equine articular chondrocytes (eACs) was analyzed with indirect co-culture and/or MSC-conditioned media (CM). The expression of healthy cartilage/OA and proliferation markers was evaluated in eACs (monolayers or organoids). In vitro repair experiments with MSC-CM were made to evaluate the proliferation and migration of eACs. The presence of nanosized EVs in MSC-CM was appraised with nanoparticle tracking assay and transmission electron microscopy. Our results demonstrated that the MSC secretome influences eAC phenotype by increasing cartilage functionality markers and cell migration in a greater way than MSCs, which could delay OA final outcomes. This study makes acellular therapy an appealing strategy to improve equine OA treatments. However, the MSC secretome contains a wide variety of soluble mediators and small EVs, such as exosomes, and further investigation must be performed to understand the mechanisms occurring behind these promising effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146805 | PMC |
http://dx.doi.org/10.3390/ijms23105795 | DOI Listing |
Int Immunopharmacol
December 2024
Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran. Electronic address:
Traumatic brain injury (TBI) is a disastrous phenomenon which is considered to cause high mortality and morbidity rate. Regarding the importance of TBI due to its prevalence and its effects on the brain and other organs, finding new therapeutic methods and improvement of conventional therapies seems to be vital. TBI involves a complex physiological mechanism, with inflammation being a key component among various contributing factors.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy.
Cellular senescence is a multifaceted process marked by irreversible cell cycle arrest in response to stressors such as DNA damage, oxidative stress, and telomere shortening, leading to significant cellular and mitochondrial alterations. These changes impact mesenchymal stem cell (MSC) function, affecting their differentiation, self-renewal, and regenerative abilities. Senescent MSCs adopt the senescence-associated secretory phenotype (SASP), characterized by the secretion of pro-inflammatory factors that propagate senescence to neighboring cells.
View Article and Find Full Text PDFCell Commun Signal
December 2024
Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Cellular senescence is a phenomenon distinguished by the halting of cellular division, typically triggered by DNA injury or numerous stress-inducing factors. Cellular senescence is implicated in various pathological and physiological processes and is a hallmark of aging. The presence of accumulated senescent cells, whether transiently (acute senescence) or persistently (chronic senescence) plays a dual role in various conditions such as natural kidney aging and different kidney disorders.
View Article and Find Full Text PDFOrthop Rev (Pavia)
December 2024
Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
Background: The complex nature of musculoskeletal diseases and the limitations of existing treatments have driven researchers to explore innovative solutions, particularly those involving stem cells and their derivatives. The utilization of the IPFP as a source of MSC-derived non-cellular products for the treatment of musculoskeletal diseases has gained recognition in recent years. This study aimed to identify the progress of IPFP-derived acellular biologics use in the treatment of orthopedic conditions such as osteoarthritis and ligament and/or tendon injuries.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria.
Autoimmune diseases represent a severe personal and healthcare problem that seeks novel therapeutic solutions. Mesenchymal stem cells (MSCs) are multipotent cells with interesting cell biology and promising therapeutic potential. The immunoregulatory effects of secretory factors produced by umbilical cord mesenchymal stem cells (UC-MSCs) were assessed on B lymphocytes from 17 patients with systemic lupus erythematosus (SLE), as defined by the 2019 European Alliance of Associations for Rheumatology (EULAR)/American College of Rheumatology (ACR) classification criteria for SLE, and 10 healthy volunteers (HVs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!