Unveiling Molecular Mechanisms of Nitric Oxide-Induced Low-Temperature Tolerance in Cucumber by Transcriptome Profiling.

Int J Mol Sci

Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Group, College of Agriculture, Shihezi University, Shihezi 832000, China.

Published: May 2022

Cucumber ( L.) is one of the most popular cultivated vegetable crops but it is intrinsically sensitive to cold stress due to its thermophilic nature. To explore the molecular mechanism of plant response to low temperature (LT) and the mitigation effect of exogenous nitric oxide (NO) on LT stress in cucumber, transcriptome changes in cucumber leaves were compared. The results showed that LT stress regulated the transcript level of genes related to the cell cycle, photosynthesis, flavonoid accumulation, lignin synthesis, active gibberellin (GA), phenylalanine metabolism, phytohormone ethylene and salicylic acid (SA) signaling in cucumber seedlings. Exogenous NO improved the LT tolerance of cucumber as reflected by increased maximum photochemical efficiency (Fv/Fm) and decreased chilling damage index (CI), electrolyte leakage and malondialdehyde (MDA) content, and altered transcript levels of genes related to phenylalanine metabolism, lignin synthesis, plant hormone (SA and ethylene) signal transduction, and cell cycle. In addition, we found four differentially expressed transcription factors (MYB63, WRKY21, HD-ZIP, and b-ZIP) and their target genes such as the light-harvesting complex I chlorophyll a/b binding protein 1 gene (), light-harvesting complex II chlorophyll a/b binding protein 1, 3, and 5 genes (, , and ), chalcone synthase gene (), ethylene-insensitive protein 3 gene (), phenylalanine ammonia-lyase gene (), DNA replication licensing factor gene ( and ), gibberellin 3 beta-dioxygenase gene (), and regulatory protein gene (), which are potentially associated with plant responses to NO and LT stress. Notably, HD-ZIP and b-ZIP specifically responded to exogenous NO under LT stress. Taken together, these results demonstrate that cucumber seedlings respond to LT stress and exogenous NO by modulating the transcription of some key transcription factors and their downstream genes, thereby regulating photosynthesis, lignin synthesis, plant hormone signal transduction, phenylalanine metabolism, cell cycle, and GA synthesis. Our study unveiled potential molecular mechanisms of plant response to LT stress and indicated the possibility of NO application in cucumber production under LT stress, particularly in winter and early spring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146554PMC
http://dx.doi.org/10.3390/ijms23105615DOI Listing

Publication Analysis

Top Keywords

cell cycle
12
lignin synthesis
12
phenylalanine metabolism
12
protein gene
12
molecular mechanisms
8
cucumber
8
tolerance cucumber
8
cucumber transcriptome
8
stress
8
plant response
8

Similar Publications

Leishmania mexicana N-Acetyltransferease 10 Is Important for Polysome Formation and Cell Cycle Progression.

Mol Microbiol

January 2025

Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil.

Leishmania presents a complex life cycle that involves both invertebrate and vertebrate hosts. By regulating gene expression, protein synthesis, and metabolism, the parasite can adapt to various environmental conditions. This regulation occurs mainly at the post-transcriptional level and may involve epitranscriptomic modifications of RNAs.

View Article and Find Full Text PDF

Upregulation of Cyclin E1 and subsequent activation of CDK2 accelerates cell cycle progression from G1 to S phase and is a common oncogenic driver in gynecological malignancies. WEE1 kinase counteracts the effects of Cyclin E1/CDK2 activation by regulating multiple cell cycle checkpoints. Here we characterized the relationship between Cyclin E1/CDK2 activation and sensitivity to the selective WEE1 inhibitor azenosertib.

View Article and Find Full Text PDF

Nuclear speckles are membraneless organelles that associate with active transcription sites and participate in post-transcriptional mRNA processing. During the cell cycle, nuclear speckles dissolve following phosphorylation of their protein components. Here, we identify the PP1 family as the phosphatases that counteract kinase-mediated dissolution.

View Article and Find Full Text PDF

FOXM1 is the "Achilles' heel" of cancers and hence the potential therapeutic target for anticancer drug discovery. In this work, we selected high affinity peptides against the protein of human DNA binding domain of FOXM1 (FOXM1-DBD) from the disulfide-constrained, phage displayed random cyclic heptapeptide library Ph.D.

View Article and Find Full Text PDF

Introduction: The phase 2 TROPiCS-03 study evaluated the efficacy/safety of sacituzumab govitecan (SG) as second-line treatment in patients with previously treated extensive-stage small cell lung cancer (ES-SCLC).

Methods: TROPiCS-03 (NCT03964727) is a multicohort, open-label, phase 2 basket study in solid tumors, including ES-SCLC. Adults with ES-SCLC that progressed after one prior line of platinum-based chemotherapy and anti-programmed death-(ligand) 1 (PD-[L]1) therapy received SG 10 mg/kg on days 1 and 8 of a 21-day cycle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!