Protein prenylation is a post-translational modification controlling the localization, activity, and protein-protein interactions of small GTPases, including the Ras superfamily. This covalent attachment of either a farnesyl (15 carbon) or a geranylgeranyl (20 carbon) isoprenoid group is catalyzed by four prenyltransferases, namely farnesyltransferase (FTase), geranylgeranyltransferase type I (GGTase-I), Rab geranylgeranyltransferase (GGTase-II), and recently discovered geranylgeranyltransferase type III (GGTase-III). Blocking small GTPase activity, namely inhibiting prenyltransferases, has been proposed as a potential disease treatment method. Inhibitors of prenyltransferase have resulted in substantial therapeutic benefits in various diseases, such as cancer, neurological disorders, and viral and parasitic infections. In this review, we overview the structure of FTase, GGTase-I, GGTase-II, and GGTase-III and summarize the current status of research on their inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141697 | PMC |
http://dx.doi.org/10.3390/ijms23105424 | DOI Listing |
J Thorac Oncol
November 2024
Department of Pharmacology and Toxicology and Massey Comprehensive Cancer Center,. Electronic address:
KRAS G12C targeted therapies, such as sotorasib, represent a major breakthrough, but overall response rates and progression-free survival for patients with KRAS G12C lung cancer are modest due to the emergence of resistance mechanisms involving adaptive reactivation of ERK, which requires wild-type (WT) HRAS and NRAS membrane localization. Here, we demonstrate that the dual farnesyltransferase (FT) and geranylgeranyltransferase-1 (GGT-1) inhibitor FGTI-2734 inhibits WT RAS membrane localization and sotorasib-induced ERK feedback reactivation, and overcomes sotorasib adaptive resistance. The combination of FGTI-2734 and sotorasib is synergistic at inhibiting the viability and inducing apoptosis of KRAS G12C lung cancer cells, including those highly resistant to sotorasib.
View Article and Find Full Text PDFG3 (Bethesda)
August 2024
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
Many proteins undergo a post-translational lipid attachment, which increases their hydrophobicity, thus strengthening their membrane association properties or aiding in protein interactions. Geranylgeranyltransferase-I (GGTase-I) is an enzyme involved in a 3-step post-translational modification (PTM) pathway that attaches a 20-carbon lipid group called geranylgeranyl at the carboxy-terminal cysteine of proteins ending in a canonical CaaL motif (C-cysteine, a-aliphatic, L-often leucine, but can be phenylalanine, isoleucine, methionine, or valine). Genetic approaches involving 2 distinct reporters were employed in this study to assess Saccharomyces cerevisiae GGTase-I specificity, for which limited data exist, toward all 8,000 CXXX combinations.
View Article and Find Full Text PDFDis Model Mech
May 2024
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
Prenylated proteins are prevalent in eukaryotic biology (∼1-2% of proteins) and are associated with human disease, including cancer, premature aging and infections. Prenylated proteins with a C-terminal CaaX sequence are targeted by CaaX-type prenyltransferases and proteases. To aid investigations of these enzymes and their targets, we developed Saccharomyces cerevisiae strains that express these human enzymes instead of their yeast counterparts.
View Article and Find Full Text PDFPlants (Basel)
April 2024
Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes (IBMP), Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France.
In plants, the plastidial mevalonate (MVA)-independent pathway is required for the modification with geranylgeranyl groups of CaaL-motif proteins, which are substrates of protein geranylgeranyltransferase type-I (PGGT-I). As a consequence, fosmidomycin, a specific inhibitor of 1-deoxy-d-xylulose (DX)-5 phosphate reductoisomerase/DXR, the second enzyme in this so-called methylerythritol phosphate (MEP) pathway, also acts as an effective inhibitor of protein prenylation. This can be visualized in plant cells by confocal microscopy by expressing GFP-CaM-CVIL, a prenylation sensor protein.
View Article and Find Full Text PDFCell Chem Biol
July 2024
Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany. Electronic address:
This study describes the identification and target deconvolution of small molecule inhibitors of oncogenic Yes-associated protein (YAP1)/TAZ activity with potent anti-tumor activity in vivo. A high-throughput screen (HTS) of 3.8 million compounds was conducted using a cellular YAP1/TAZ reporter assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!