Microwaves (2450 MHz, 60 mW/g) are shown to result in the release or shedding of at least 11 low-molecular-weight proteins (less than or equal to 31,000 Da) from rabbit erythrocytes maintained in physiological buffer. Protein release was detected by gel electrophoresis of cell-free supernatants using sensitive silver staining. This release is oxygen dependent and occurs in 30 min for exposures conducted within the special temperature region of 17-21 degrees C, which is linked to a structural or conformational transition in the cell membrane. Shedding of 26,000 and 24,000 Da proteins is unique to microwave treatment, with enhanced release of 28,000 and less than or equal to 15,000 Da species during microwave compared to sham exposures. Two-dimensional isoelectric focusing further reveals that proteins of less than or equal to 14,000 Da shed during microwave treatment exhibit a pI of 6.8-7.3 not seen in sham-treated cells. Treatment of erythrocytes with a serine-directed protease inhibitor does not prevent release of proteins. However, when erythrocytes are maintained at 17-21 degrees C by conventional heating in the absence of divalent cations, release of 28,000-31,000 and less than or equal to 14,000 Da components is detected. This indicates that cation-bridge stability may be important for release of these proteins. The above results provide evidence that microwaves alter erythrocyte protein composition at temperatures linked to a transition in the cell membrane and that destabilization of salt bridges may play a role in an interaction mechanism for protein release.
Download full-text PDF |
Source |
---|
Photochem Photobiol Sci
January 2025
Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.
View Article and Find Full Text PDFGeroscience
January 2025
National Institute On Aging, Bethesda, MD, USA.
Photobiomodulation (PBM) therapy, a non-thermal light therapy using nonionizing light sources, has shown therapeutic potential across diverse biological processes, including aging and age-associated diseases. In 2023, scientists from the National Institute on Aging (NIA) Intramural and Extramural programs convened a workshop on the topic of PBM to discuss various proposed mechanisms of PBM action, including the stimulation of mitochondrial cytochrome C oxidase, modulation of cell membrane transporters and receptors, and the activation of transforming growth factor-β1. They also reviewed potential therapeutic applications of PBM across a range of conditions, including cardiovascular disease, retinal disease, Parkinson's disease, and cognitive impairment.
View Article and Find Full Text PDFMol Divers
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.
View Article and Find Full Text PDFAdv Biol (Weinh)
January 2025
Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!