Although regenerative and inflammatory processes are involved in the etiopathogenesis of many psychiatric disorders, their roles are poorly understood. We investigate the potential role of stem cells (SC) and factors influencing the trafficking thereof, such as complement cascade (CC) components, phospholipid substrates, and chemokines, in the etiology of schizophrenia. We measured sphingosine-1-phosphate (S1P), stromal-derived factor 1 (SDF-1), and CC cleavage fragments (C3a, C5a, and C5b-C9; also known as the membrane attack complex) in the peripheral blood of 49 unrelated patients: 9 patients with ultra-high risk of psychosis (UHR), 22 patients with first-episode psychosis (FEP), and 18 healthy controls (HC). When compared with the HC group, the UHR and FEP groups had higher levels of C3a. We found no significant differences in hematopoietic SC, very small embryonic-like stem cell (VSEL), C5a, S1P, or SDF-1 levels in the UHR and FEP groups. However, among FEP patients, there was a significant positive correlation between VSELs (CD133+) and negative symptoms. These preliminary findings support the role of the immune system and regenerative processes in the etiology of schizophrenia. To establish the relevance of SC and other factors affecting the trafficking thereof as potential biomarkers of schizophrenia, more studies on larger groups of individuals from across the disease spectrum are needed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141672 | PMC |
http://dx.doi.org/10.3390/ijerph19106001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!