Renal aging has attracted increasing attention in today's aging society, as elderly people with advanced age are more susceptible to various kidney disorders such as acute kidney injury (AKI) and chronic kidney disease (CKD). There is no clear-cut universal mechanism for identifying age-related kidney diseases, and therefore, they pose a considerable medical and public health challenge. Epigenetics refers to the study of heritable modifications in the regulation of gene expression that do not require changes in the underlying genomic DNA sequence. A variety of epigenetic modifiers such as histone deacetylases (HDAC) inhibitors and DNA methyltransferase (DNMT) inhibitors have been proposed as potential biomarkers and therapeutic targets in numerous fields including cardiovascular diseases, immune system disease, nervous system diseases, and neoplasms. Accumulating evidence in recent years indicates that epigenetic modifications have been implicated in renal aging. However, no previous systematic review has been performed to systematically generalize the relationship between epigenetics and age-related kidney diseases. In this review, we aim to summarize the recent advances in epigenetic mechanisms of age-related kidney diseases as well as discuss the application of epigenetic modifiers as potential biomarkers and therapeutic targets in the field of age-related kidney diseases. In summary, the main types of epigenetic processes including DNA methylation, histone modifications, non-coding RNA (ncRNA) modulation have all been implicated in the progression of age-related kidney diseases, and therapeutic targeting of these processes will yield novel therapeutic strategies for the prevention and/or treatment of age-related kidney diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9142069 | PMC |
http://dx.doi.org/10.3390/genes13050796 | DOI Listing |
Aging results in a progressive decline in physiological function due to the deterioration of essential biological processes, such as transcription and RNA splicing, ultimately increasing mortality risk. Although proteomics is emerging as a powerful tool for elucidating the molecular mechanisms of aging, existing studies are constrained by limited proteome coverage and only observe a narrow range of lifespan. To overcome these limitations, we integrated the Orbitrap Astral Mass Spectrometer with the multiplex tandem mass tag (TMT) technology to profile the proteomes of three brain tissues (cortex, hippocampus, striatum) and kidney in the C57BL/6JN mouse model, achieving quantification of 8,954 to 9,376 proteins per tissue (cumulatively 12,749 across all tissues).
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, 84112.
The recovery from muscle atrophy is impaired with aging as characterized by improper muscle remodeling and sustained functional deficits. Age-related deficits in muscle regrowth are tightly linked with the loss of early pro-inflammatory macrophage responses and subsequent cellular dysregulation within the skeletal muscle niche. Macrophage inflammatory phenotype is regulated at the metabolic level, highlighting immunometabolism as an emerging strategy to enhance macrophage responses and restore functional muscle regrowth.
View Article and Find Full Text PDFNeuropsychopharmacol Hung
December 2024
Municipal Clinic of Szentendre, Internal Medicine, Szentendre, Hungary.
J Comp Pathol
January 2025
Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK. Electronic address:
Hypertension is a common condition in older cats, often secondary to chronic kidney disease (CKD). Although the heart is one of the organs damaged by hypertension, the pathology of the feline hypertensive (HT) heart has been poorly studied. The aim of this retrospective study was to describe the gross and microscopic pathology of hearts obtained from cats at post-mortem examination and to compare cats diagnosed with hypertension with cats of similar age and kidney function for which antihypertensive treatment was not deemed clinically necessary.
View Article and Find Full Text PDFAm J Ophthalmol
December 2024
Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, Ontario, Canada. Electronic address:
Purpose: To assess the risk of renal adverse events, particularly acute kidney injury (AKI), between intravitreal anti-vascular endothelial growth factor (anti-VEGF) agents.
Design: Meta-analysis.
Methods: A systematic literature search was conducted on Ovid Medline, Embase and the Cochrane Library for randomized controlled trials (RCTs) published from January 2005 to February 2024 involving adult patients receiving anti-VEGF intravitreal injections for agerelated macular degeneration, diabetic macular edema, and macular edema secondary to retinal vein occlusion.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!