In this study, we investigated the effects of various defatting methods, including organic solvent (aqueous, acetone, ethanol, and hexane) extraction and physical (cold pressure) extraction, on the nutritional, physicochemical, and functional properties of proteins extracted from larvae. The total essential amino acid contents were higher with cold pressure protein extraction than other treatments. The surface hydrophobicity with cold pressure treatment was the lowest, and there were no significant differences among the other treatments. The protein solubility after defatting with organic solvent was higher than for other treatments. The nonreduced protein band at 50 kDa of the defatted protein prepared using organic solvent was fainter than in the cold pressure treatment. The cold pressure-defatted protein showed the highest emulsifying capacity, and the water extracted protein showed the lowest emulsifying capacity. Although organic solvents may be efficient for defatting proteins extracted from insects, organic solvents have detrimental effects on the human body. In addition, the organic solvent extraction method requires a considerable amount of time for lipid extraction. Based on our results, using cold pressure protein extraction on edible insect proteins is ecofriendly and economical due to the reduced degreasing time and its potential industrial applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140877PMC
http://dx.doi.org/10.3390/foods11101400DOI Listing

Publication Analysis

Top Keywords

cold pressure
20
organic solvent
16
proteins extracted
12
effects defatting
8
defatting methods
8
properties proteins
8
extracted larvae
8
pressure protein
8
protein extraction
8
pressure treatment
8

Similar Publications

Legume proteins have recently gained significant interest in the food industry for their eco-friendliness and nutritional qualities. Research shows that the replacement of specific animal protein sources with legume proteins presents sustainability and economic benefit. Nonetheless, legume proteins frequently exhibit inferior functional properties and palatability compared to animal proteins.

View Article and Find Full Text PDF

Unlabelled: The effects of high hydrostatic pressure (HHP) (400-650 MPa) and holding temperature (25-50 °C) in thermally assisted HHP processing on multi-scale structure of starch (granule, crystalline and molecular), techno-functional properties, and digestibility of sorghum starch (SS) were evaluated. Response surface methodology has verified that the process impact on the modification of SS was dependent primarily on the pressure level. As HHP increased, processed SS progressively lost their granular structure and Maltese cross, indicating gradual structural disorder within the granules.

View Article and Find Full Text PDF

This study compared the effects of seed treatment with low-pressure cold plasma (CP) and atmospheric dielectric barrier discharge (DBD) plasma on morpho-biochemical traits in Bertoni plants cultivated by two methods: in soil and aeroponics. We investigated the impact of the treatments on the germination, plant growth, and content of secondary metabolites, namely steviol glycosides (SGs), rebaudioside A (RebA), and stevioside (Stev), as well as phenolic compounds and flavonoids. Seeds were treated for 2, 5, and 7 min with CP or DBD and 5 min with vacuum six days before sowing.

View Article and Find Full Text PDF

In this study, we investigated the effect of spray angle on the microstructure, bonding quality, and scratch resistance of cold-sprayed SS316L coatings on SS304 substrates. The coatings were deposited at spray angles of 45°, 60°, 75°, and 90° using a high-pressure cold spray system. A comprehensive analysis of the relationship between the spray angle and coating properties was conducted, with a particular focus on fracture toughness and porosity.

View Article and Find Full Text PDF

Effect of Plasma Treatment on Coating Adhesion and Tensile Strength in Uncoated and Coated Rubber Under Aging.

Materials (Basel)

January 2025

Mechanical Engineering Department, Universidad Carlos III de Madrid, 28911 Leganés, Spain.

The degradation of rubber materials under environmental and mechanical stress presents a significant challenge, particularly due to UV (ultraviolet light) exposure, which severely impacts the material's physical properties. This study aims to enhance the UV stability and longevity of rubber by evaluating the performance of modified polyurethane and silicone coatings as protective stabilizers. Natural rubber-styrene-butadiene rubber (NR-SBR), known for its exceptional mechanical properties, was selected as the base material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!