Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Mediterranean diet has, among its cornerstones, the use of olive oil for its nutraceutical and organoleptic properties. Despite the numerous merits, olive-oil mill wastewater (OMWW), which is generated by the olive-oil extraction process, is one of the most serious environmental pollutants in the Mediterranean countries. The polluting potential of OMWW is due to its high content of tannins, polyphenols, polyalcohols, pectins and lipids. In order to close the recovery cycle of a fortified citrus olive oils previously developed, we tested the ability of five microalgae of the Chlorella group (SEC_LI_ChL_1, CL_Sc, CL_Ch, FB and Idr) in lowering the percentage of total phenolic compounds in vegetation water. This was obtained with three different extraction processes (conventional, and lemon and orange peels) at three concentrations each (10%, 25% and 50%). The results showed that strains Idr, FB and CL_Sc from the Lake Massaciuccoli can tolerate vegetation water from conventional and lemon peel extractions up to 25%; these strains can also reduce the phenolic compounds within the tests. The application of microalgae for OMWW treatment represents an interesting opportunity as well as an eco-friendly low-cost solution to be developed within companies as a full-scale approach, which could be applied to obtain a fortified microalgal biomass to be employed in nutraceutical fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141023 | PMC |
http://dx.doi.org/10.3390/foods11101398 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!