SMER28 (Small molecule enhancer of Rapamycin 28) is an autophagy-inducing compound functioning by a hitherto unknown mechanism. Here, we confirm its autophagy-inducing effect by assessing classical autophagy-related parameters. Interestingly, we also discovered several additional effects of SMER28, including growth retardation and reduced G1 to S phase progression. Most strikingly, SMER28 treatment led to a complete arrest of receptor tyrosine kinase signaling, and, consequently, growth factor-induced cell scattering and dorsal ruffle formation. This coincided with a dramatic reduction in phosphorylation patterns of PI3K downstream effectors. Consistently, SMER28 directly inhibited PI3Kδ and to a lesser extent p110γ. The biological relevance of our observations was underscored by SMER28 interfering with InlB-mediated host cell entry of , which requires signaling through the prominent receptor tyrosine kinase c-Met. This effect was signaling-specific, since entry of unrelated, gram-negative Typhimurium was not inhibited. Lastly, in B cell lymphoma cells, which predominantly depend on tonic signaling through PI3Kδ, apoptosis upon SMER28 treatment is profound in comparison to non-hematopoietic cells. This indicates SMER28 as a possible drug candidate for the treatment of diseases that derive from aberrant PI3Kδ activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140127PMC
http://dx.doi.org/10.3390/cells11101648DOI Listing

Publication Analysis

Top Keywords

smer28
8
smer28 treatment
8
receptor tyrosine
8
tyrosine kinase
8
smer28 attenuates
4
attenuates pi3k/mtor
4
signaling
4
pi3k/mtor signaling
4
signaling direct
4
direct inhibition
4

Similar Publications

Synergizing autophagic cell death and oxaliplatin-induced immunogenic death by a self-delivery micelle for enhanced tumor immunotherapy.

Acta Biomater

December 2024

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China. Electronic address:

Article Synopsis
  • * This study introduces a targeted micelle that combines two types of cell death—immunogenic cell death (ICD) and autophagic cell death (ACD)—using a conjugated oxaliplatin (OXA) prodrug and autophagy activator SMER28, which specifically targets tumor cells.
  • * In experiments with mice, the combined approach demonstrated enhanced anti-tumor immunity and effective tumor growth inhibition, providing a promising strategy for improving chemo-immunotherapy.
View Article and Find Full Text PDF

Autophagic Degradation Is Involved in Cell Protection against Ricin Toxin.

Toxins (Basel)

April 2023

Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette 91191, France.

Autophagy is a complex and highly regulated degradative process, which acts as a survival pathway in response to cellular stress, starvation and pathogen infection. Ricin toxin is a plant toxin produced by the castor bean and classified as a category B biothreat agent. Ricin toxin inhibits cellular protein synthesis by catalytically inactivating ribosomes, leading to cell death.

View Article and Find Full Text PDF

SMER28 originated from a screen for small molecules that act as modulators of autophagy. SMER28 enhanced the clearance of autophagic substrates such as mutant huntingtin, which was additive to rapamycin-induced autophagy. Thus, SMER28 was established as a positive regulator of autophagy acting independently of the mTOR pathway, increasing autophagosome biosynthesis and attenuating mutant huntingtin-fragment toxicity in cellular- and fruit fly disease models, suggesting therapeutic potential.

View Article and Find Full Text PDF

The ability to maintain a functional proteome by clearing damaged or misfolded proteins is critical for cell survival, and aggregate-prone proteins accumulate in many neurodegenerative diseases, such as Huntington, Alzheimer, and Parkinson diseases. The removal of such proteins is mainly mediated by the ubiquitin-proteasome system and autophagy, and the activity of these systems declines in disease or with age. We recently found that targeting VCP/p97 with compounds like SMER28 enhances macroautophagy/autophagy flux mediated by the increased activity of the PtdIns3K complex I.

View Article and Find Full Text PDF

SPG15 is a hereditary spastic paraplegia subtype caused by mutations in Spastizin, a protein encoded by the ZFYVE26 gene. Spastizin is involved in autophagosome maturation and autophagic lysosome reformation and SPG15-related mutations lead to autophagic lysosome reformation defects with lysosome enlargement, free lysosome depletion and autophagosome accumulation. Symptomatic and rehabilitative treatments are the only therapy currently available for patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!