Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, we attempted to find a relation between bacteria living conditions and their genome algorithmic complexity. We developed a probabilistic mathematical method for the evaluation of k-words (6 bases length) occurrence irregularity in bacterial gene coding sequences. For this, the coding sequences from different bacterial genomes were analyzed and as an index of k-words occurrence irregularity, we used W, which has a distribution similar to normal. The research results for bacterial genomes show that they can be divided into two uneven groups. First, the smaller one has in the interval from 170 to 475, while for the second it is from 475 to 875. Plants, metazoan and virus genomes also have in the same interval as the first bacterial group. We suggested that second bacterial group coding sequences are much less susceptible to evolutionary changes than the first group ones. It is also discussed to use the index as a biological stress value.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141341 | PMC |
http://dx.doi.org/10.3390/e24050632 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!