In theoretical biology, refers to the ability of a biological system to function properly even under perturbation of basic parameters (e.g., temperature or pH), which in mathematical models is reflected in not needing to fine-tune basic parameter constants; refers to the ability of a system to switch functions or behaviors easily and effortlessly. While there are extensive explorations of the concept of robustness and what it requires mathematically, understanding flexibility has proven more elusive, as well as also elucidating the apparent opposition between what is required mathematically for models to implement either. In this paper we address a number of arguments in theoretical neuroscience showing that both robustness and flexibility can be attained by systems that poise themselves at the onset of a large number of dynamical bifurcations, or , and how such poising can have a profound influence on integration of information processing and function. Finally, we examine critical map lattices, which are coupled map lattices where the coupling is dynamically critical in the sense of having purely imaginary eigenvalues. We show that these map lattices provide an explicit connection between dynamical criticality in the sense we have used and "edge of chaos" criticality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141846 | PMC |
http://dx.doi.org/10.3390/e24050591 | DOI Listing |
Entropy (Basel)
December 2024
Instituto de Física Teórica UAM/CSIC, Campus de Cantoblanco, c/Nicolás Cabrera 13-15, 28049 Madrid, Spain.
Non-Hermitian quantum field theories are a promising tool to study open quantum systems. These theories preserve unitarity if PT symmetry is respected, and in that case, an equivalent Hermitian description exists via the so-called Dyson map. Generically, PT-symmetric non-Hermitian theories can also feature phases where PT symmetry is broken and unitarity is lost.
View Article and Find Full Text PDFNano Lett
January 2025
IBM Research─Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
The inhomogeneous magnetic stray field of micromagnets has been extensively used to manipulate electron spin qubits. By means of micromagnetic simulations and scanning superconducting quantum interference device microscopy, we show that the polycrystallinity of the magnet and nonuniform magnetization significantly impact the stray field and corresponding qubit properties. The random orientation of the crystal axis in polycrystalline Co magnets alters the qubit frequencies by up to 0.
View Article and Find Full Text PDFNanotechnology
January 2025
Departamento de Física, Universidade Federal do Ceará, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil.
We investigate the electronic properties of nanoribbons made out of monolayer Lieb, transition, and kagome lattices using the tight-binding model with a generic Hamiltonian. It allows us to map the evolutionary stages of the interconvertibility process between Lieb and kagome nanoribbons by means of only one control parameter. Results for the energy spectra, the density of states, and spatial probability density distributions are discussed for nanoribbons with three types of edges: straight, bearded, and asymmetric.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.
We present a study on nanoscale skyrmionic spin textures in [Formula: see text], a rare-earth complex noncollinear ferromagnet. We confirm, using X-ray microscopy, that [Formula: see text] can host lattices of metastable skyrmion bubbles at room temperature in the absence of a magnetic field, after applying a suitable field cooling protocol. The skyrmion bubbles are robust against temperature changes from room temperature to 330 K.
View Article and Find Full Text PDFSci Rep
January 2025
Nanchang Institute of Technology, Nanchang, 330099, China.
Drone inspections are widely utilized in the detection of insulators in power lines. To address issues with traditional object detection algorithms, such as large parameter counts, low detection accuracy, and high miss rates, this paper proposes an insulator detection algorithm based on an improved YOLOv5 model. Firstly, in the backbone and neck networks, a lightweight CSP-SCConv module is employed to replace the original CSP-Darknet53 module, thereby reducing the parameter count and enhancing the feature extraction capabilities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!