Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Parkinson's Disease (PD) is a progressive central nervous system disorder that is caused due to the neural degeneration mainly in the substantia nigra in the brain. It is responsible for the decline of various motor functions due to the loss of dopamine-producing neurons. Tremors in hands is usually the initial symptom, followed by rigidity, bradykinesia, postural instability, and impaired balance. Proper diagnosis and preventive treatment can help patients improve their quality of life. We have proposed an ensemble of Deep Learning (DL) models to predict Parkinson's using DaTscan images. Initially, we have used four DL models, namely, VGG16, ResNet50, Inception-V3, and Xception, to classify Parkinson's disease. In the next stage, we have applied a Fuzzy Fusion logic-based ensemble approach to enhance the overall result of the classification model. The proposed model is assessed on a publicly available database provided by the Parkinson's Progression Markers Initiative (PPMI). The achieved recognition accuracy, Precision, Sensitivity, Specificity, F1-score from the proposed model are 98.45%, 98.84%, 98.84%, 97.67%, and 98.84%, respectively which are higher than the individual model. We have also developed a Graphical User Interface (GUI)-based software tool for public use that instantly detects all classes using Magnetic Resonance Imaging (MRI) with reasonable accuracy. The proposed method offers better performance compared to other state-of-the-art methods in detecting PD. The developed GUI-based software tool can play a significant role in detecting the disease in real-time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139649 | PMC |
http://dx.doi.org/10.3390/diagnostics12051173 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!