To evaluate the embolic properties of different acrylic adhesive/iodized oil mixtures for lymphatic interventions. Polymerization of histoacryl (HA) (Bayer Healthcare) and glubran 2 (GL) (GEM) mixed with iodized oil (ratios 1:0-1:7) were investigated in lymphatic fluids with low and high triglyceride (low TG & high TG) contents. Static polymerization time and dynamic polymerization experiments with different volumes of glucose flush (1, 2 and 5 mL) were performed to simulate thoracic duct embolization. For both glues, static polymerization times were longer when the iodized oil content was increased and when performed in high TG lymphatic fluid. In the dynamic experiments, the prolongation of polymerization due to the oil content and TG levels was less pronounced for both glue types. Increased lymphatic flow rates decreased embolization times for low glue/oil ratios while preventing embolization for high glue/oil ratios. Higher glucose flush volumes increased occlusion times. Polymerization times of acrylic glue in a lymphatic fluid are prolonged by increasing the iodized oil concentration and triglyceride concentration as well as by using larger volumes of glucose flush. Increased lymphatic flow rates decrease embolization times for low glue/oil ratios and may prevent embolization for high glue/oil ratios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138217 | PMC |
http://dx.doi.org/10.3390/biomedicines10051195 | DOI Listing |
Biomedicines
May 2022
Department of Diagnostic and Interventional Radiology, University of Bonn, Venusberg-Campus 1, 53105 Bonn, Germany.
To evaluate the embolic properties of different acrylic adhesive/iodized oil mixtures for lymphatic interventions. Polymerization of histoacryl (HA) (Bayer Healthcare) and glubran 2 (GL) (GEM) mixed with iodized oil (ratios 1:0-1:7) were investigated in lymphatic fluids with low and high triglyceride (low TG & high TG) contents. Static polymerization time and dynamic polymerization experiments with different volumes of glucose flush (1, 2 and 5 mL) were performed to simulate thoracic duct embolization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!