Tacrolimus has a narrow therapeutic window; a whole-blood trough target concentration of between 5 and 8 ng/mL is considered a safe level for stable kidney transplant recipients. Tacrolimus serum levels must be closely monitored to obtain a balance between maximizing efficacy and minimizing dose-related toxic effects. Currently, there is no specific tacrolimus toxicity biomarker except a graft biopsy. Our study aimed to identify specific serum metabolites correlated with tacrolinemia levels using serum high-precision liquid chromatography-mass spectrometry and standard laboratory evaluation. Three machine learning algorithms were used (Naïve Bayes, logistic regression, and Random Forest) in 19 patients with high tacrolinemia (8 ng/mL) and 23 patients with low tacrolinemia (5 ng/mL). Using a selected panel of five lipid metabolites (phosphatidylserine, phosphatidylglycerol, phosphatidylethanolamine, arachidyl palmitoleate, and ceramide), Mg, and uric acid, all three machine learning algorithms yielded excellent classification accuracies between the two groups. The highest classification accuracy was obtained by Naïve Bayes, with an area under the curve of 0.799 and a classification accuracy of 0.756. Our results show that using our identified five lipid metabolites combined with Mg and uric acid serum levels may provide a novel tool for diagnosing tacrolimus toxicity in kidney transplant recipients. Further validation with targeted MS and biopsy-proven TAC toxicity is needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138871PMC
http://dx.doi.org/10.3390/biomedicines10051157DOI Listing

Publication Analysis

Top Keywords

machine learning
12
learning algorithms
12
kidney transplant
12
transplant recipients
12
toxicity kidney
8
recipients tacrolimus
8
serum levels
8
tacrolimus toxicity
8
three machine
8
naïve bayes
8

Similar Publications

Objective: The aim of this study was to develop and validate predictive models for perineural invasion (PNI) in gastric cancer (GC) using clinical factors and radiomics features derived from contrast-enhanced computed tomography (CE-CT) scans and to compare the performance of these models.

Methods: This study included 205 GC patients, who were randomly divided into a training set (n=143) and a validation set (n=62) in a 7:3 ratio. Optimal radiomics features were selected using the least absolute shrinkage and selection operator (LASSO) algorithm.

View Article and Find Full Text PDF

Objective: To assess performance of an algorithm for automated grading of surgery-related adverse events (AEs) according to Clavien-Dindo (C-D) classification.

Summary Background Data: Surgery-related AEs are common, lead to increased morbidity for patients, and raise healthcare costs. Resource-intensive manual chart review is still standard and to our knowledge algorithms using electronic health record (EHR) data to grade AEs according to C-D classification have not been explored.

View Article and Find Full Text PDF

Background: Distinctive heterogeneity characterizes diffuse large B-cell lymphoma (DLBCL), one of the most frequent types of non-Hodgkin's lymphoma. Mitochondria have been demonstrated to be closely involved in tumorigenesis and progression, particularly in DLBCL.

Objective: The purposes of this study were to identify the prognostic mitochondria-related genes (MRGs) in DLBCL, and to develop a risk model based on MRGs and machine learning algorithms.

View Article and Find Full Text PDF

Introduction: This study aimed to identify cognitive tests that optimally relate to tau positron emission tomography (PET) signal in the inferior temporal cortex (ITC), a neocortical region associated with early tau accumulation in Alzheimer's disease (AD).

Methods: We analyzed cross-sectional data from the harvard aging brain study (HABS) (= 128) and the Anti-Amyloid Treatment in Asymptomatic Alzheimer's (A4) study (= 393). We used elastic net regression to identify the most robust cognitive correlates of tau PET signal in the ITC.

View Article and Find Full Text PDF

Emerging trends in the optimization of organic synthesis through high-throughput tools and machine learning.

Beilstein J Org Chem

January 2025

Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore.

The discovery of the optimal conditions for chemical reactions is a labor-intensive, time-consuming task that requires exploring a high-dimensional parametric space. Historically, the optimization of chemical reactions has been performed by manual experimentation guided by human intuition and through the design of experiments where reaction variables are modified one at a time to find the optimal conditions for a specific reaction outcome. Recently, a paradigm change in chemical reaction optimization has been enabled by advances in lab automation and the introduction of machine learning algorithms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!