Before the SARS-CoV-2 Omicron variant emergence, shell disorder models (SDM) suggested that an attenuated precursor from pangolins may have entered humans in 2017 or earlier. This was based on a shell disorder analysis of SARS-CoV-1/2 and pangolin-Cov-2017. The SDM suggests that Omicron is attenuated with almost identical N (inner shell) disorder as pangolin-CoV-2017 (N-PID (percentage of intrinsic disorder): 44.8% vs. 44.9%-lower than other variants). The outer shell disorder (M-PID) of Omicron is lower than that of other variants and pangolin-CoV-2017 (5.4% vs. 5.9%). COVID-19-related CoVs have the lowest M-PIDs (hardest outer shell) among all CoVs. This is likely to be responsible for the higher contagiousness of SARS-CoV-2 and Omicron, since hard outer shell protects the virion from salivary/mucosal antimicrobial enzymes. Phylogenetic study using M reveals that Omicron branched off from an ancestor of the Wuhan-Hu-1 strain closely related to pangolin-CoVs. M, being evolutionarily conserved in COVID-19, is most ideal for COVID-19 phylogenetic study. Omicron may have been hiding among burrowing animals (e.g., pangolins) that provide optimal evolutionary environments for attenuation and increase shell hardness, which is essential for fecal-oral-respiratory transmission via buried feces. Incoming data support SDM e.g., the presence of fewer infectious particles in the lungs than in the bronchi upon infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139003PMC
http://dx.doi.org/10.3390/biom12050631DOI Listing

Publication Analysis

Top Keywords

shell disorder
20
outer shell
12
shell
8
disorder models
8
sars-cov-2 omicron
8
phylogenetic study
8
omicron
7
disorder
5
models detect
4
detect omicron
4

Similar Publications

African Swine Fever Virus (ASFV) is a highly contagious pathogen with nearly 100% mortality in swine, causing severe global economic loss. Current detection methods rely on nucleic acid amplification, which requires specialized equipment and skilled operators, limiting accessibility in resource-constrained settings. To address these challenges, we developed the Covalently Immobilized Magnetic Nanoparticles Enhanced CRISPR (CIMNE-CRISPR) system.

View Article and Find Full Text PDF

Ferritin nanoparticles significantly enhance the immune response to the African swine fever virus p34 protein.

Int J Pharm

January 2025

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.. Electronic address:

Background: African swine fever (ASF) is a highly contagious disease, and the core-shell protein p34 is an important antigen that can induce immune responses. The use of ferritin nanoparticles for the orderly and repetitive display of antigens on the particle surface can improve the immunogenicity of subunit vaccines. Here, we used the SpyCatcher/Spytag system to conjugate ferritin nanoparticles with the p34 protein (F-p34).

View Article and Find Full Text PDF

Ultrasonic-assisted extraction of luteolin from peanut shells using ionic liquid and its molecular mechanism.

Ultrason Sonochem

January 2025

College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, PR China. Electronic address:

This study investigates the potential of ionic liquids (ILs) as sustainable solvents in ultrasonic-assisted extraction (UAE) to efficiently recover luteolin from peanut shells. Among the range of ILs tested, 1-butyl-3-methylimidazolium tetrafluoroborate stood out as the most effective solvent, achieving the highest extraction yield. Single-factor experiments were conducted to analyze the effects of ultrasonic power, extraction time, extraction temperature, IL concentration, and solid-to-liquid ratio on extraction efficiency.

View Article and Find Full Text PDF

Identification of long non-coding RNAs and their multiple regulation mechanism in shell deposition of pearl oyster.

Comp Biochem Physiol Part D Genomics Proteomics

January 2025

Fishery collage, Guangdong Ocean University, 524088 Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang 524088, China; Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Zhanjiang 524033, China. Electronic address:

Biomineralization to fabricate diverse morphology shell is typical character of bivalve species and ectopic calcification to form is the production of defense. Long non-coding RNAs (LncRNAs) plays critical roles in multiple cellular biological processes in invertebrate and vertebrate. However, LncRNAs remain poorly understood about expression and regulation roles in bivalve biomineralization studies.

View Article and Find Full Text PDF

Oral glucose-responsive nanoparticles loaded with artemisinin induce pancreatic β-cell regeneration for the treatment of type 2 diabetes.

J Colloid Interface Sci

January 2025

School of Life Science, South China Normal University, Guangzhou 510631 China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631 China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400 China. Electronic address:

Type 2 diabetes (T2D) is a chronic disease characterized by long-term insulin resistance (IR) and pancreatic β-cell dysfunction. Conventional T2D medication ignores pancreatic β-cell damage. In this study, we designed an oral glucose-responsive nanoparticle for pancreatic β-cell regeneration and treatment of T2D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!