Various immune cells are known to participate in combating infection. Regulatory B cells represent a subset of B cells that take part in immunomodulation and control inflammation. The immunoregulatory function of regulatory B cells has been shown in various murine models of several disorders. In this study, a comparable IL-10 competent B-10 cell subset (regulatory B cells) was characterized during lethal and non-lethal infection with malaria parasites using the mouse model. We observed that infection of Balb/c mice with I 7XL was lethal, and a rapid increase in dynamics of IL-10 producing B220CD5CD1d regulatory B cells over the course of infection was observed. However, animals infected with a less virulent strain of the parasite I7XNL attained complete resistance. It was observed that there is an increase in the population of regulatory B cells with an increase of parasitemia; however, a sudden drop in the frequency of these cells was observed with parasite clearance. Adoptive transfer of regulatory B cells to naïve mice followed by infection results in slow parasite growth and enhancement of survival in 17XL (lethal) infected animals. Adoptively transferred regulatory B cells also resulted in decreased production of pro-inflammatory cytokine (IFN-γ) and enhanced production of anti-inflammatory cytokine (IL-10). It infers that these regulatory B cells may contribute in immune protection by preventing the inflammation associated with disease and inhibiting the parasite growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138363 | PMC |
http://dx.doi.org/10.3390/biology11050669 | DOI Listing |
Anal Chim Acta
May 2025
State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Dadao, Nanjing, 211198, China. Electronic address:
Background: Traditional studies of protein responses to external stimuli primarily focus on changes in protein abundance, often overlooking the critical role of protein conformational alterations. To address this gap, we developed Protein Abundance and Conformation Analysis (PACA), an integrative method that quantifies both protein abundance and conformational changes. PACA combines conventional quantitative proteomics for abundance measurements with Target Response Accessibility Profiling (TRAP), a technique that captures conformational changes in situ by applying reductive dimethylation to label accessible lysine residues in living cells before lysis.
View Article and Find Full Text PDFJ Immunother Cancer
March 2025
St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
Background: Anti-human epidermal growth factor receptor 2 (HER2) IgG1-based antibody therapies significantly improve cancer prognosis, yet intrinsic or acquired resistance to fragment antigen-binding (Fab)-mediated direct effects commonly occurs. Most resistant tumors retain antigen expression and therefore remain potentially targetable with anti-HER2 therapies that promote immune-mediated responses. Tumor-antigen-specific IgE class antibodies can mediate powerful immune cell-mediated effects against different cancers and have been shown to activate IgE Fc receptor-expressing monocytes.
View Article and Find Full Text PDFCell Signal
March 2025
Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, PR China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University Zhengzhou, Henan, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of, China. Electronic address:
Acute kidney injury (AKI) lacks a definitive therapeutic approach beyond supportive care. One significant pathological mechanism involves the regulated death of tubular epithelial cells; however, the regulatory mechanisms underlying this cell death pathway require further investigation. The N6-methyladenosine (m6A) modification, recognized as the most prevalent modification in eukaryotes, plays a critical role in the regulatory processes associated with AKI.
View Article and Find Full Text PDFFish Shellfish Immunol
March 2025
Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, 890-0056, Japan; Course of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, 890-0065, Japan. Electronic address:
Edwardsiella piscicida is a Gram-negative intracellular pathogen causing Edwardsiellosis, leading to economic losses in aquaculture. While phagocytosis is its primary infection route, alternative entry pathways remain largely unexplored. Neu1 sialidase, a lysosomal enzyme in glycoconjugate degradation, was investigated for its role in E.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
March 2025
Department of Biological Sciences, California State University San Marcos, CA 92096, USA. Electronic address:
Salmonid fishes are well adapted to transition between salinities as part of a diadromid lifestyle, and many species are both economically and environmentally important. Ion-transporting gill epithelium helps fishes maintain ion balance during salinity transition. Recent transcriptomic surveys suggest that voltage-gated ion channels (VGICs) are present in gill epithelium of fishes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!