Breaking the Rebellion: Photodynamic Inactivation against Resistant to Streptomycin.

Antibiotics (Basel)

Laboratory of Photodynamic Inactivation of Microorganisms, Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria.

Published: April 2022

Global crop production depends on strategies to counteract the ever-increasing spread of plant pathogens. Antibiotics are often used for large-scale treatments. As a result, , causal agent of the contagious fire blight disease, has already evolved resistance to streptomycin (Sm). Photodynamic Inactivation (PDI) of microorganisms has been introduced as innovative method for plant protection. The aim of this study is to demonstrate that resistant to Sm () can be killed by PDI. Two photosensitizers, the synthetic B17-0024, and the natural derived anionic sodium magnesium chlorophyllin (Chl) with cell-wall-permeabilizing agents are compared in terms of their photo-killing efficiency in liquid culture with or without 100 µg/mL Sm. In vitro experiments were performed at photosensitizer concentrations of 1, 10 or 100 µM and 5 or 30 min incubation in the dark, followed by illumination at 395 nm (radiant exposure 26.6 J/cm). The highest inactivation of seven log steps was achieved at 100 µM B17-0024 after 30 min incubation. Shorter incubation (5 min), likely to represent field conditions, reduced the photo-killing to 5 log steps. Chlorophyllin at 100 µM in combination with 1.2% polyaspartic acid (PASA) reduced the number of bacteria by 6 log steps. While PASA itself caused some light independent toxicity, an antibacterial effect (3 log reduction) was achieved only in combination with Chl, even at concentrations as low as 10 µM. Addition of 100 µg/mL Sm to media did not significantly increase the efficacy of the photodynamic treatment. This study proves principle that PDI can be used to treat plant diseases even if causative bacteria are resistant to conventional treatment. Therefore, PDI based on natural photosensitizers might represent an eco-friendly treatment strategy especially in organic farming.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9137749PMC
http://dx.doi.org/10.3390/antibiotics11050544DOI Listing

Publication Analysis

Top Keywords

100 µm
12
log steps
12
photodynamic inactivation
8
100 µg/ml
8
min incubation
8
0
5
breaking rebellion
4
rebellion photodynamic
4
inactivation resistant
4
resistant streptomycin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!