Amyotrophic Lateral Sclerosis (ALS) is characterized by the progressive degeneration of upper or lower motor neurons, leading to muscle wasting and paralysis, resulting in respiratory failure and death. The precise ALS aetiology is poorly understood, mainly due to clinical and genetic heterogeneity. Thus, the identification of reliable biomarkers of disease could be helpful in clinical practice. In this study, we investigated whether the levels of brain-derived neurotrophic factor (BDNF) and its precursor Pro-BDNF in serum and cerebrospinal fluid (CSF) may reflect the pathological changes related to ALS. We found higher BDNF and lower Pro-BDNF levels in ALS sera compared to healthy controls. BDNF/Pro-BDNF ratio turned out to be accurate in distinguishing ALS patients from controls. Then, the correlations of these markers with several ALS clinical variables were evaluated. This analysis revealed three statistically significant associations: (1) Patients carrying the expansion significantly differed from non-carrier patients and showed serum BDNF levels comparable to control subjects; (2) BDNF levels in CSF were significantly higher in ALS patients with faster disease progression; (3) lower serum levels of Pro-BDNF were associated with a shorter survival. Therefore, we suggest that BDNF and Pro-BDNF, alone or in combination, might be used as ALS prognostic biomarkers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139087PMC
http://dx.doi.org/10.3390/brainsci12050617DOI Listing

Publication Analysis

Top Keywords

bdnf pro-bdnf
8
amyotrophic lateral
8
lateral sclerosis
8
als
8
als patients
8
bdnf levels
8
bdnf
6
levels
5
pro-bdnf amyotrophic
4
sclerosis perspective
4

Similar Publications

Introduction: Parkinson's disease (PD) is characterized by progressive neurodegeneration within the nigrostriatum, leading to motor dysfunction. This systematic review aimed to summarize the effects of various exercise training regimens on protein or gene expression within the nigrostriatum and their role in neuroprotection and motor function improvement in animal models of Parkinson's disease (PD).

Methods: PubMed, EMBASE, and Web of Science were searched up to June 2024 and included sixteen studies that adhere to PRISMA guidelines and CAMARADES checklist scores ranging from 4 to 6 out of 10.

View Article and Find Full Text PDF

Brain-derived neurotropic factor (BDNF) is expressed by skeletal muscle as a myokine. Our previous work showed that the active precursor, proBDNF, is the predominant form of BDNF expressed in skeletal muscle, and that following skeletal muscle injury, proBDNF levels are significantly increased. However, the function of the muscle-derived proBDNF in injury-induced inflammation has yet to be fully understood.

View Article and Find Full Text PDF

The study aimed to examine the effects of Quetiapine, an atypical antipsychotic medication with purported neuroprotective qualities, on cognitive function and synaptic plasticity in epileptic rats. This investigation also sought to elucidate the mechanisms by which quetiapine influences the activity of the cyclic adenylate response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway and metallomatrix proteinase-9 (MMP9) expression in the context of epilepsy. The epileptic model was induced in rats through the administration of pilocarpine, with normal rats serving as the control group.

View Article and Find Full Text PDF
Article Synopsis
  • Long-term conventional spinal cord stimulation (LT-SCS) is effective for treating painful diabetic peripheral neuropathy (PDPN) initially, but its effectiveness may decline over time.
  • *In a rat study, LT-SCS led to increased thresholds for mechanical hypersensitivity and changes in nerve fiber density, indicating structural adaptations in response to pain.
  • *The study suggests that LT-SCS reduces certain proteins associated with pain pathways, revealing potential mechanisms for its effectiveness in managing PDPN symptoms.*
View Article and Find Full Text PDF

Background: Alcohol use disorders (AUDs) are complex pathologies with a myriad of molecular actors involved in both disease progression and remission. Brain-derived neurotrophic factor (BDNF) is suspected to be one such actor due to its neurotrophic effects. The BDNF precursor, pro-BDNF, has different effects, as it mainly promotes neuronal apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!