Emerging studies provide new data shedding some light on the complex and pivotal role of red blood cells (RBCs) in nitric oxide (NO) metabolism and paracrine regulation of endothelial function. NO is involved in the regulation of vasodilatation, platelet aggregation, inflammation, hypoxic adaptation, and oxidative stress. Even though tremendous knowledge about NO metabolism has been collected, the exact RBCs' status still requires evaluation. This paper summarizes the actual knowledge regarding the role of erythrocytes as a mobile depot of amino acids necessary for NO biotransformation. Moreover, the complex regulation of RBCs' translocases is presented with a particular focus on cationic amino acid transporters (CATs) responsible for the NO substrates and derivatives transport. The main part demonstrates the intraerythrocytic metabolism of L-arginine with its regulation by reactive oxygen species and arginase activity. Additionally, the process of nitrite and nitrate turnover was demonstrated to be another stable source of NO, with its reduction by xanthine oxidoreductase or hemoglobin. Additional function of hemoglobin in NO synthesis and its subsequent stabilization in steady intermediates is also discussed. Furthermore, RBCs regulate the vascular tone by releasing ATP, inducing smooth muscle cell relaxation, and decreasing platelet aggregation. Erythrocytes and intraerythrocytic NO metabolism are also responsible for the maintenance of normotension. Hence, RBCs became a promising new therapeutic target in restoring NO homeostasis in cardiovascular disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9137828 | PMC |
http://dx.doi.org/10.3390/antiox11050943 | DOI Listing |
Heliyon
January 2025
Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, China.
Objective: Ankylosing spondylitis (AS) is a chronic autoimmune disease characterized by systemic inflammation, often resulting in fusion of the spine and peripheral joints. This study aimed to investigate the role of innate lymphoid cells (ILCs) in AS patients with high disease activity.
Methods: Blood samples were collected from healthy controls and AS patients categorized by high or low disease activity.
Dig Liver Dis
January 2025
Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Laboratory Medicine, Region Jönköping County, Jönköping, Sweden. Electronic address:
Background: Azathioprine (AZA) is part of the standard treatment for autoimmune hepatitis (AIH). The first step in the complex bioconversion of AZA to active metabolites is mediated by glutathione transferases (GSTs).
Aims: Elucidate the association between GSTM1 and GSTT1 copy number variation (CNV), genetic variation in GSTA2, GSTP1, and inosine-triphosphate-pyrophosphatase, and the response to AZA in AIH.
Pharmaceuticals (Basel)
January 2025
Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Mexico City C.P. 07738, Mexico.
: In recent years the global incidence of cancer during pregnancy is rising, occurring in 1 out of every 1000 pregnancies. In this regard, the most used chemotherapy drugs to treat cancer are alkylating agents such as cyclophosphamide (Cp). Despite its great efficacy, has been associated with the production of oxidative stress and DNA damage, leading to embryotoxicity, genotoxicity, and teratogenicity in the developing .
View Article and Find Full Text PDFLife (Basel)
January 2025
Department of Dermatology, New York Medical College, New York, NY 10595, USA.
Rosacea is a chronic inflammatory skin disorder characterized by central facial redness, papulopustular lesions, and occasionally phymatous changes. There is ongoing debate regarding rosacea as a cutaneous disease with systemic inflammatory effects and its associations with cardiovascular diseases. Although the pathogenesis of both atherosclerosis and rosacea demonstrate notable similarities, particularly in the central role of inflammation, significant gaps in understanding these connections remain.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China.
The hypoxia-inducible factor (HIF) pathway has been demonstrated to play a pivotal role in the process of high-altitude adaptation. PHD2, a key regulator of the HIF pathway, has been found to be associated with erythropoiesis. However, the relationship between changes in Phd2 abundance and erythroid differentiation under hypoxic conditions remains to be elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!