Neutrophils are important cellular mediators of injury and repair in diseases including ischemic heart disease, atherosclerosis, and sepsis. Myeloperoxidase-derived (MPO)-oxidants released from neutrophils are potential mediators of endothelial injury in disease. MPO-derived HOCl attacks plasmalogen phospholipid to liberate 2-chlorofatty aldehyde (2-ClFALD). Both 2-ClFALD and its oxidation product, 2-chlorofatty acid (2-ClFA), are electrophilic lipids, and both probably react with proteins through several mechanisms. In the present study, we investigate protein modification specifically by 2-ClFALD under non-reducing conditions (e.g., without stabilizing Schiff base bonds), which likely reflects nucleophilic targeting of the electrophilic chlorinated carbon. Protein modification by the ω-alkyne analog of 2-chlorohexadecanal (2-ClHDA), 2-ClHDyA, was compared to that with the ω-alkyne analog of 2-chlorohexadecanoic acid (2-ClHA), 2-ClHyA, in multiple cell lines, which demonstrated 2-ClFALD preferentially modifies proteins compared to 2-ClFA. The 2-ClHDyA modified proteins from EA.hy926 cells and human lung microvascular endothelial cells analyzed by shotgun proteomics and over-representation analysis included adherens junction, cell adhesion molecule binding, and cell substrate junction enrichment categories. It is possible that proteins in these groups may have roles in previously described 2-ClFALD-elicited endothelial barrier dysfunction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138145 | PMC |
http://dx.doi.org/10.3390/antiox11050940 | DOI Listing |
Redox Biochem Chem
December 2023
Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.
Myeloperoxidase and eosinophil peroxidase exert their antimicrobial functions through the oxidative actions of their hypohalous acid products. Plasmalogen phospholipids are particularly susceptible to oxidation of their vinyl ether functional group by hypohalous acids. This produces a family of halogenated lipid products with pro-inflammatory roles and potential biomarker utility.
View Article and Find Full Text PDFAntioxidants (Basel)
February 2023
Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
Hypochlorous acid is produced by leukocyte myeloperoxidase activity. 2-Chlorofatty aldehydes (2-ClFALDs) are formed when hypochlorous acid attacks the plasma membrane phospholipid plasmalogen molecular subclass and are thus produced following leukocyte activation as well as in the lungs of mice exposed to chlorine gas. The biological role of 2-ClFALD is largely unknown.
View Article and Find Full Text PDFRedox Biol
February 2023
Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA. Electronic address:
Neutrophil and airway epithelial cell interactions are critical in the inflammatory response to viral infections including respiratory syncytial virus, Sendai virus, and SARS-CoV-2. Airway epithelial cell dysfunction during viral infections is likely mediated by the interaction of virus and recruited neutrophils at the airway epithelial barrier. Neutrophils are key early responders to viral infection.
View Article and Find Full Text PDFAntioxidants (Basel)
May 2022
Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
Neutrophils are important cellular mediators of injury and repair in diseases including ischemic heart disease, atherosclerosis, and sepsis. Myeloperoxidase-derived (MPO)-oxidants released from neutrophils are potential mediators of endothelial injury in disease. MPO-derived HOCl attacks plasmalogen phospholipid to liberate 2-chlorofatty aldehyde (2-ClFALD).
View Article and Find Full Text PDFRedox Biol
December 2021
Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA; Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA. Electronic address:
Plasmalogens are a class of phospholipids containing vinyl ether linked aliphatic groups at the sn-1 position. Plasmalogens are known to contain 16- and 18-carbon aliphatic groups at the sn-1 position. Here, we reveal that the human neutrophil plasmenylethanolamine pool uniquely includes molecular species with very long carbon chain (VLC) aliphatic groups, including 20-, 22- and 24-carbon vinyl ether linked aliphatic groups at the sn-1 position.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!