The main chemical component of high-silicon iron tailings (HSITs) is SiO; HSITs also include some oxides such as AlO and CaO. Mechanical activation can reduce the particle size of HSITs and enhance their pozzolanic activity such that they can be used as a type of mineral admixture for cement-based materials (CBMs). This study aims to investigate the mechanical activation (ultrafine grinding) effects of HSITs, including physical and crystallization structure effects. The particle distribution, specific surface area, density, and solubility of HSITs were tested using laser particle size analysis and other routine physical testing methods. Their crystal structures were analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry-thermogravimetry (DSC-TG). Grinding reduced the particle size of HSIT particles and increased their specific surface area, wherein the minimum D50 was 5.75 μm, the maximum specific surface area was 7608 m/kg, and the corresponding grinding time was 3.5 h. With an increase in grinding time, the solubility showed an increasing trend; however, the density showed a decreasing trend. The change was fast before 3.5 h or 4 h and then slowed down, but the final solubility was still higher than its initial level, while the final density was still lower than its initial level. Grinding reduced the degree of crystallization of the minerals in HSITs and increased the microscopic strain and disorder of its crystal structure. These changes were significant for a grinding time of 0-3.5 h, after which the changes tended to be slow. The symmetry and integrity of the SiO structure decreased with grinding. The activity index of the HSIT powder was higher than 0.6. Ultrafine grinding improves the particle size distribution of HSITs and reduces the crystallinity of their main minerals, which in turn increases their chemical reactivity. It can be said that ultra-finely ground HSIT powder is pozzolanic and can be used as a mineral admixture for CBMs, and its grinding limit can be inferred to be 3.5 h.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-20964-xDOI Listing

Publication Analysis

Top Keywords

particle size
16
specific surface
12
surface area
12
grinding time
12
grinding
10
grinding effects
8
high-silicon iron
8
iron tailings
8
mechanical activation
8
mineral admixture
8

Similar Publications

The application of high-pressure grinding rolls (HPGR) for ore crushing is considered to be one of the effective ways to save energy and reduce emissions in the ore processing industry. The crushing effect is directly determined by the forces of ore material during roll crushing. However, the mechanical state of ore material in roll crushing and the effect of roll structure, process parameters, feed particle size, on the force during the crushing of ore material needs to be expanded.

View Article and Find Full Text PDF

Periodontitis, a common chronic inflammatory condition caused by bacteria, leads to loss of attachment, resorption of alveolar bone, and ultimately tooth loss. Therefore, reducing bacterial load and fostering alveolar bone regeneration are essential components in the treatment of periodontitis. In this study, we prepared smaller-sized Ag-Metal Organic Frameworks (Ag@MOF) and loaded with sodium alginate (Alg) hydrogel for periodontitis treatment.

View Article and Find Full Text PDF

Extraction of cellulose nanocrystals from date seeds using transition metal complex-assisted hydrochloric acid hydrolysis.

Int J Biol Macromol

January 2025

Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates. Electronic address:

In this study, the role of a transition metal complex in improving hydrolysis efficiency during nanocellulose production was analysed. Cellulose nanocrystals (CNCs) were extracted from date seeds by incorporating a copper metal complex during HCl hydrolysis. In contrast to traditional HCl hydrolysis at moderate conditions, which yielded only microcrystalline cellulose (MCC), this approach resulted in the extraction of CNCs with a 10 % improved yield compared to MCC.

View Article and Find Full Text PDF

Synthesis of BODIPYs using organoindium reagents and survey of their cytotoxicity and cell uptake on nervous system cells.

Bioorg Chem

December 2024

Universidade da Coruña, CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultad de Ciencias, Campus A Zapateira, 15071 A Coruña, Spain. Electronic address:

In this study, a series of BODIPY dyes were synthesized, containing various substituents at meso position. Further functionalization of the BODIPY framework at C2 and C2-C6 position(s) by palladium-catalysed cross-coupling reactions using organoindium reagents (RIn) was efficiently assessed, starting from C2(6)-halogenated BODIPYs, and their optical properties were measured. The cytotoxicity of BODIPY dyes on SH-SY5Y neuronal cells by MTT assay showed that those compounds bearing thien-2-yl and benzonitrile moieties at meso position, exhibited great efficiency in maintaining cell viability under all tested conditions (up to 50 µM for 24 h and 48 h).

View Article and Find Full Text PDF

An optimized microwave-assisted low methoxyl pectin extraction procedure was described. Six task specific deep eutectic solvents (TDES) were used in the extraction of pectin from bilimbi (LMABP) and pomelo peels (LMCGP). Response surface methodology-based optimization of the parameters like feed-to-solvent ratio, extraction time, and microwave power level results in 72.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!