Wound dressings with waterproof, breathable, and bacterial-resistant properties are still rarely realized. In this work, a newly hydrogel-based dressing is designed with a backing of expanded polytetrafluoroethylene (ePTFE) film. The ePTFE grafting with polyvinylpyrrolidone (PVP) brush is composited with hydrogel successfully with an adhesion energy of ≈80 kJ m . In this resultant composite, the ePTFE backing contributes excellent breathability, water resistance, and bacterial barrier property. The water vapor transmission rate of the composite is 4.83 × 10 g m × 24 h, which can maintain the moist environment of wound and relieve pain by evaporating water. Notably, it can withstand 500 mm water column for over 300 s, which is obviously better than the commonly used nonwoven fabric backing materials. It can also prevent the invasion of bacteria, because the pores of ePTFE backing are smaller than those of most common bacterial. As a result, the composite with an ePTFE film backing has a positive effect in accelerating wound healing, promoting the reconstruction of intact epidermis and reducing inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.202200131 | DOI Listing |
Nanoscale
January 2025
School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
Thermoplastic polyurethane (TPU) fabrics often possess good mechanical, waterproofing, and breathability properties. However, the resistance of TPU to excessive ultraviolet (UV) irradiation is poor and often does not meet the UV resistance requirements of fabrics. Electrospun nanofibers with a side-by-side structure can combine the advantages of different materials.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
State Key Laboratory of Advanced Fiber Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai Key Laboratory of Lightweight Composite, Donghua University, Shanghai 201620, China. Electronic address:
It remains a challenge for a simple and scalable method to fabricate ultrathin porous Janus membranes for stretchable on-skin electronics. Here, we propose a one-step droplet spreading phase separation strategy to prepare an ultrathin and easily collected Janus thermoplastic polyurethane (TPU) membrane within seconds. The metal-ion solvation structure mitigated migration kinetics to delay TPU solution demixing, promoting the further penetration of the coagulating solvent.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Biomass Science and Engineering, Key Laboratory of Biomass Fibers for Medical Care in Textile Industry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
The demand for antibacterial, antifungal, and deodorant textiles has grown significantly with the increasing concern for health and hygiene. In this study, novel functional cotton fabric (EE) with long-lasting antibacterial, antifungal, and deodorant activity was prepared by graft modification with triclosan and eugenol. EE shows more than 99% antibacterial and antifungal activity against , , , and through mechanisms such as inhibiting enzyme activity and disrupting cell structure.
View Article and Find Full Text PDFSmall
December 2024
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China.
Triboelectric nanogenerators (TENGs), among the most simple and efficient means to harvest mechanical energy, have great potential in renewable energy utilization. While the output performance of TENGs is still not high enough, which limits its practical application. Here, a poly(vinylidene fluoride) (PVDF)/fluorinated ethylene propylene nanoparticles (FEP NPs) porous nanofiber (PFPN) membrane with waterproof, breathable, surface superhydrophobic and high tribo-negative properties is proposed for achieving high-performance of TENGs.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Engineering Department, Campus de Arrosadía S/N, Public University of Navarre, 31006 Pamplona, Spain.
The development of superhydrophobic, waterproof, and breathable membranes, as well as icephobic surfaces, has attracted growing interest. Fluorinated polymers like PTFE or PVDF are highly effective, and previous research by the authors has shown that combining these polymers with electrospinning-induced roughness enhances their hydro- and ice-phobicity. The infusion of these electrospun mats with lubricant oil further improves their icephobic properties, achieving a slippery liquid-infused porous surface (SLIPS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!