Proximity labeling for investigating protein-protein interactions.

Methods Cell Biol

Department of Medicine, Duke University Medical Center, Durham, NC, United States; Department of Cell Biology, Duke University Medical Center, Durham, NC, United States. Electronic address:

Published: May 2022

The study of protein complexes and protein-protein interactions is of great importance due to their fundamental roles in cellular function. Proximity labeling, often coupled with mass spectrometry, has become a powerful and versatile tool for studying protein-protein interactions by enriching and identifying proteins in the vicinity of a specified protein-of-interest. Here, we describe and compare traditional approaches to investigate protein-protein interactions to current day state-of-the-art proximity labeling methods. We focus on the wide array of proximity labeling strategies and underscore studies using diverse model systems to address numerous biological questions. In addition, we highlight current advances in mass spectrometry-based technology that exhibit promise in improving the depth and breadth of the data acquired in proximity labeling experiments. In all, we show the diversity of proximity labeling strategies and emphasize the broad range of applications and biological inquiries that can be addressed using this technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10782847PMC
http://dx.doi.org/10.1016/bs.mcb.2021.12.006DOI Listing

Publication Analysis

Top Keywords

proximity labeling
24
protein-protein interactions
16
labeling strategies
8
proximity
6
labeling
5
labeling investigating
4
protein-protein
4
investigating protein-protein
4
interactions
4
interactions study
4

Similar Publications

Pretargeted Multimodal Tumor Imaging by Enzymatic Self-Immobilization Labeling and Bioorthogonal Reaction.

J Am Chem Soc

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China.

Covalent modification of cell membranes has shown promise for tumor imaging and therapy. However, existing membrane labeling techniques face challenges such as slow kinetics and poor selectivity for cancer cells, leading to off-target effects and suboptimal efficacy. Here, we present an enzyme-triggered self-immobilization labeling strategy, termed E-SIM, which enables rapid and selective labeling of tumor cell membranes with bioorthogonal trans-cycloctene (TCO) handles .

View Article and Find Full Text PDF

RBBP6 anchors pre-mRNA 3' end processing to nuclear speckles for efficient gene expression.

Mol Cell

January 2025

Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA. Electronic address:

Pre-mRNA 3' processing is an integral step in mRNA biogenesis. However, where this process occurs in the nucleus remains unknown. Here, we demonstrate that nuclear speckles (NSs), membraneless organelles enriched with splicing factors, are major sites for pre-mRNA 3' processing in human cells.

View Article and Find Full Text PDF

Biotinylation by antibody recognition (BAR) is an antibody-based approach for mapping proximal protein interactions in cells. Here, we present a protocol to biotinylate and identify proximal proteins using BAR. We describe steps for defining proximity labeling reaction conditions, assessing enrichment using western blot, and sample preparation for mass spectroscopy analysis.

View Article and Find Full Text PDF

The ubiquitin (Ub) ligase E6AP, which is encoded by the UBE3A gene, has been associated with several human diseases including cervical cancer and Angelman syndrome, a neurodevelopmental disorder. Yet, our knowledge about disease-relevant substrates of E6AP is still limited. The formation of a thioester complex between Ub and the catalytic Cys residue of E6AP represents an essential intermediate step in E6AP-mediated ubiquitination.

View Article and Find Full Text PDF

Sulfonated indocyanines 3 and 5 (sCy3, sCy5) are widely used to label biomolecules. Their high molar absorption coefficients and lack of spectral overlap with biopolymers make them ideal as linker components for rapid assessment of bioconjugate stoichiometry. We recently found that the determination of the sCy3:sCy5 molar ratio in a conjugate from its optical absorption spectrum is not straightforward, as the sCy3:sCy5 absorbance ratio at the maxima tends to be larger than expected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!