Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Asian clam (Corbicula fluminea) and eastern oyster (Crassostrea virginica) are important resource bivalves found in and downstream of waterways afflicted with cyanobacterial harmful algae blooms (CHABs), respectively. This study examined the potential for C. fluminea and C. virginica to become vectors of the hepatotoxin, microcystin, from the CHAB Microcystis. Laboratory experiments were performed to quantify clearance rates, particle selection, and accumulation of the hepatotoxin, microcystin, using a microcystin-producing Microcystis culture isolated from Lake Erie (strain LE-3) and field experiments were performed with water from Microcystis blooms in Lake Agawam, NY, USA. Clearance rates of Microcystis were faster (p<0.05) than those of Raphidocelis for C. fluminea, while C. virginica cleared Microcystis and Tisochrysis at similar rates. For both bivalves, clearance rates of bloom water were slower than cultures and clams displayed significantly greater electivity for green algae compared to wild populations of cyanobacteria in field experiments while oysters did not. In experiments with cultured Microcystis comprised of single and double cells, both bivalves accumulated >3 µg microcystins g (wet weight) in 24 - 72 h, several orders of magnitude beyond California guidance value (10 ng g ) but accumulated only up to 2 ng microcystins g when fed bloom water dominated by large Microcystis colonies for four days. For Asian clams, clearance rates and tissue microcystin content decreased when exposed to toxic Microcystis for 3 - 4 days. In contrast, eastern oysters did not depurate microcystin over 3 - 4-day exposures and accumulated an order of magnitude more microcystin than clams. This contrast suggests Asian clams are likely to accumulate minor amounts of microcystin by reducing clearance rates during blooms of Microcystis, selectively feeding on green algae, and depurating microcystin whereas oysters are more likely to accumulate microcystins and thus are more likely to be a vector for hepatotoxic shellfish poisoning in estuaries downstream of Microcystis blooms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.hal.2022.102236 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!