Achieving simultaneous nitrification, denitrification, and phosphorus removal in pilot-scale flow-through biofilm reactor with low dissolved oxygen concentrations: Performance and mechanisms.

Bioresour Technol

School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China. Electronic address:

Published: August 2022

In this pilot-scale study, a flow-through biofilm reactor (FTBR) was investigated for municipal wastewater treatment. The removal efficiencies for ammonium, total nitrogen, total phosphorus, and chemical oxygen demand were 87.2 ± 17.9%, 61.1 ± 13.9%, 83.5 ± 11.9%, and 92.6 ± 1.7%, respectively, at low dissolved oxygen concentrations (averaged at 0.59 mg/L), indicating the feasibility and robustness of the FTBR for a simultaneous nitrification, denitrification, and phosphorous removal (SNDPR) process. The co-occurrence network of bacteria in the dynamic biofilm was complex, with equivalent bacterial cooperation and competition. Nevertheless, the bacterial interactions in the suspended sludge were mainly cooperative. The presence of dynamic biofilms increased bacterial diversity by creating niche differentiation, which enriched keystone species closely related to nutrient removal. Overall, this study provides a novel FTBR-based SNDPR process and reveals the ecological mechanisms responsible for nutrient removal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.127373DOI Listing

Publication Analysis

Top Keywords

simultaneous nitrification
8
nitrification denitrification
8
flow-through biofilm
8
biofilm reactor
8
low dissolved
8
dissolved oxygen
8
oxygen concentrations
8
sndpr process
8
nutrient removal
8
removal
5

Similar Publications

Simultaneous partial nitrification, anammox, and denitrification (SNAD) process offers a promising method for the effective removal of carbon and nitrogen from wastewater. However, ensuring stability is a challenge. This study investigated operational parameters such as hydraulic retention time (HRT) and biomass retention to stabilize SNAD operation, transitioning from synthetic to anaerobically pre-treated municipal wastewater (APMW) in an upflow hybrid biofilm-granular reactor (UHR).

View Article and Find Full Text PDF

How does forest fine root litter affect the agricultural soil NH and NO losses?

J Environ Manage

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China. Electronic address:

In farmland shelterbelt systems, the decomposition and/or apoptosis of forest fine root litter could affect farmland soil properties at the tree-crop interface, particularly the soil nitrogen (N) cycling. However, how fine root litter affect the ammonia (NH) and nitrous oxide (NO) losses from farmland soil and the crop production is little known. A soil column experiment covering a whole rice season was conducted to evaluate the dynamics aforesaid in response to fine root litter of Populus (RP) and Metasequoia glyptostroboides (RM) with 0 and 240 kg ha N fertilizer input.

View Article and Find Full Text PDF

The toxicity of nitrite is an issue that cannot be overlooked in nitrogen pollution within aquaculture. A highly efficient bacterium capable of simultaneous nitrification and denitrification was screened from natto, and its 16S rRNA gene sequence was compared to existing records, confirming its identification as Bacillus subtilis sp. N4.

View Article and Find Full Text PDF

Removal of Ampicillin with Nitrifying Cultures in a SBR Reactor.

Appl Biochem Biotechnol

January 2025

Department of Biotechnology-CBS, Metropolitan Autonomous University Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, 09310, Mexico City, Mexico.

The presence of antibiotics in wastewater discharges significantly affects the environment, mainly due to the generation of bacterial populations with multiple antibiotic resistances. The cometabolic capacity of nitrifying sludge to simultaneously remove ammonium (NH) and emerging organic contaminants (EOCs), including antibiotics, has been reported. In the present study, the removal capacity of 50 mg ampicillin (AMP)/L by nitrifying cultures associated with biosorption and biotransformation processes was evaluated in a sequencing batch reactor (SBR) system.

View Article and Find Full Text PDF

A novel bacterial strain, DGFC5, was isolated from a municipal sewage disposal system. It efficiently removed ammonium, nitrate, and nitrite under conditions of 5% salinity, without intermediate accumulation. Provided with a mixed nitrogen source, DGFC5 showed a higher utilization priority for NH-N.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!