ArsR-family transcriptional factors regulates diverse physiological functions necessary for Brucella adaptation to environmental changes. However, whether the ArsR-family transcriptional regulator are related to virulence, and the precise determination of ArsR direct targets in Brucella are still unknown. Therefore, we created a 2308ΔArsR6 mutant of B. abortus 2308 (S2308). Virulence assay was performed using a murine macrophage cell line (RAW 264.7). We performed chromatin immunoprecipitation of ArsR6 followed by next-generation sequencing (ChIP-seq). We also selected the target gene pobA (BAB2_0600), and created the mutant (2308ΔpobA). The survival capability of 2308ΔpobA strain in RAW 264.7 was detected and the levels of tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), interleukin-12 (IL-12) and interleukin-18 (IL-18) were also measured. The results showed that 2308ΔArsR6 reduced survival capability in RAW 264.7. We detected 40 intergenic ChIP-seq peaks of ArsR6 binding distributed across the Brucella genome. 2308ΔpobA was significantly reduced survival capability in RAW 264.7. After the macrophages were infected with 2308ΔpobA, the levels of TNF-α, IFN-γ, IL-12 and IL-18 were decreased and were significantly lower than that for the S2308-infected group, indicating that the 2308ΔpobA could reduce the secretion of inflammatory cytokines. Taken together, the research provided new insights into the functionality of ArsR6 and great significance to clarify the function of ArsR6.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2022.105557 | DOI Listing |
Antioxidants (Basel)
December 2024
Departamento de Medicina y Zootecnia de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
The most common bee species used for honey production is (), followed by stingless bees. This study included scientific articles using the PRISMA approach. A random effect model was implemented and the effect size (ES) was calculated and reported as the standardized mean difference (SMD) and raw mean difference (RMD).
View Article and Find Full Text PDFGels
December 2024
Multimaterials and Interfaces Laboratory (LMI), CNRS UMR 5615, University Claude Bernard Lyon 1, University of Lyon, 6 rue Victor Grignard, 69622 Villeurbanne, France.
Temporomandibular disorders (TMD) are a public health problem that affects around 12% of the global population. The treatment is based on analgesics, non-steroidal anti-inflammatory, corticosteroids, anticonvulsants, or arthrocentesis associated with hyaluronic acid-based viscosupplementation. However, the use of hyaluronic acid alone in viscosupplementation does not seem to be enough to regulate the intra-articular inflammatory process.
View Article and Find Full Text PDFACS Meas Sci Au
December 2024
Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, Berlin D-12489, Germany.
Flow cytometry-based immunoassays are valuable in biomedical research and clinical applications due to their high throughput and multianalyte capability, but their adoption in areas such as food safety and environmental monitoring is limited by long assay times and complex workflows. Rapid, simplified bead-based cytometric immunoassays are needed to make these methods viable for point-of-need applications, especially with the increasing accessibility of miniaturized cytometers. This work introduces superparamagnetic hybrid polystyrene-silica core-shell microparticles as promising alternatives to conventional polymer beads in competitive cytometric immunoassays.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2024
Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Barcelona 08930, Spain.
The implementation of nanocomposite materials as electrode layers represents a potential turning point for next-generation of solid oxide cells in order to reduce the use of critical raw materials. However, the substitution of bulk electrode materials by thin films is still under debate especially due to the uncertainty about their performance and stability under operando conditions, which restricts their use in real applications. In this work, we propose a multiphase nanocomposite characterized by a highly disordered microstructure and high cationic intermixing as a result from thin-film self-assembly of a perovskite-based mixed ionic-electronic conductor (lanthanum strontium cobaltite) and a fluorite-based pure ionic conductor (samarium-doped ceria) as an oxygen electrode for reversible solid oxide cells.
View Article and Find Full Text PDFMolecules
June 2024
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!