Mitochondria research and neurodegenerative diseases: On the track to understanding the biological world of high complexity.

Mitochondrion

REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, n(o) 228, Porto 4050-313, Portugal. Electronic address:

Published: July 2022

From the simple unicellular eukaryote to the highly complex multicellular organism like Human, mitochondrion emerges as a ubiquitous player to ensure the organism's functionality. It is popularly known as "the powerhouse of the cell" by its key role in ATP generation. However, our understanding of the physiological relevance of mitochondria is being challenged by data obtained in different fields. In this review, a short history of the mitochondria research field is presented, stressing the findings and questions that allowed the knowledge advances, and put mitochondrion as the main player of safeguarding organism life as well as a key to solve the puzzle of the neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mito.2022.05.001DOI Listing

Publication Analysis

Top Keywords

neurodegenerative diseases
8
mitochondria neurodegenerative
4
diseases track
4
track understanding
4
understanding biological
4
biological high
4
high complexity
4
complexity simple
4
simple unicellular
4
unicellular eukaryote
4

Similar Publications

The aetiology of Alzheimer's disease (AD) and Parkinson's disease (PD) are unknown and tend to manifest at a late stage in life; even though these neurodegenerative diseases are caused by different affected proteins, they are both characterized by neuroinflammation. Links between bacterial and viral infection and AD/PD has been suggested in several studies, however, few have attempted to establish a link between fungal infection and AD/PD. In this study we adopted a nanopore-based sequencing approach to characterise the presence or absence of fungal genera in both human brain tissue and cerebrospinal fluid (CSF).

View Article and Find Full Text PDF

NS1 binding protein regulates stress granule dynamics and clearance by inhibiting p62 ubiquitination.

Nat Commun

December 2024

Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.

The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins.

View Article and Find Full Text PDF

Neurodegeneration in Huntington's disease (HD) is accompanied by the aggregation of fragments of the mutant huntingtin protein, a biomarker of disease progression. A particular pathogenic role has been attributed to the aggregation-prone huntingtin exon 1 (HTTex1), generated by aberrant splicing or proteolysis, and containing the expanded polyglutamine (polyQ) segment. Unlike amyloid fibrils from Parkinson's and Alzheimer's diseases, the atomic-level structure of HTTex1 fibrils has remained unknown, limiting diagnostic and treatment efforts.

View Article and Find Full Text PDF

Programmable and modular systems capable of orthogonal genomic and transcriptomic perturbations are crucial for biological research and treating human genetic diseases. Here, we present the minimal versatile genetic perturbation technology (mvGPT), a flexible toolkit designed for simultaneous and orthogonal gene editing, activation, and repression in human cells. The mvGPT combines an engineered compact prime editor (PE), a fusion activator MS2-p65-HSF1 (MPH), and a drive-and-process multiplex array that produces RNAs tailored to different types of genetic perturbation.

View Article and Find Full Text PDF

Circuit-based biomarkers distinguishing the gradual progression of Lewy pathology across synucleinopathies remain unknown. Here, we show that seeding of α-synuclein preformed fibrils in mouse dorsal striatum and motor cortex leads to distinct prodromal-phase cortical dysfunction across months. Our findings reveal that while both seeding sites had increased cortical pathology and hyperexcitability, distinct differences in electrophysiological and cellular ensemble patterns were crucial in distinguishing pathology spread between the two seeding sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!