Microplastics are ubiquitous in the marine environment, and their uptake by many organisms has been well documented. Concern about increasing plastic waste in ecosystems and organisms has led to the production of biodegradable alternatives. However, long breakdown times of biodegradable plastics in natural environments mean they still have the potential to induce ecological impacts. The impacts of microplastics on organisms remain unclear, especially as many experimental microplastic exposures employ particle concentrations orders of magnitude greater than those found in natural ecosystems. Here, we exposed the ecosystem engineer, the Asian green mussel Perna viridis, to non-biodegradable and biodegradable microplastics at two environmentally relevant concentrations (~17-20 particles L and ~ 135-140 particles L). After four weeks of exposure, there were no significant effects of microplastic type or concentration on the mortality, oxygen consumption rate, clearance rate, or condition index of P. viridis. With the increasing body of microplastic literature, future exposure studies considering biotic effects should make efforts to employ environmentally relevant concentrations. Further, we suggest that, while a high-profile threat to ecosystems, investigating the effects of microplastics on ecosystems should be conducted alongside, and not draw focus away from, other major threats such as climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.156204 | DOI Listing |
Environ Manage
December 2024
College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
As biodegradable and bio-based plastics increasingly replace conventional plastics, the need for a comprehensive understanding of their ecotoxicity becomes more pressing. This review systematically presents the ecotoxicity of the microplastics (MPs) from different biodegradable plastics and bioplastics on various animals and plants. High doses of polylactic acid (PLA) MPs (10%) have been found to reduce plant nitrogen content and biomass, and affect the accumulation of heavy metals in plants.
View Article and Find Full Text PDFJ Mater Chem B
December 2024
ICGM, University of Montpellier, UMR-CNRS 5253, 34293 Montpellier, France.
We report the synthesis of multifunctional periodic mesoporous organosilica nanoparticles (PMO NPs) with substantial two-photon absorption properties and targeting capability for two-photon excitation fluorescence (TPEF) and photodynamic therapy (TPE-PDT). Prepared using an adapted sol-gel synthesis, the nanoplatforms integrated two silylated chromophores in their three-dimensional matrix to maximize non-radiative Förster resonance energy transfer from a high two-photon absorption fluorophore donor to a porphyrin derivative acceptor, leading to an enhanced generation of reactive oxygen species. Combinations of biodegradable and non-biodegradable bis(triethoxysilyl)alkoxysilanes were employed for the synthesis of the NPs, and the corresponding photophysical studies revealed high efficiency levels of FRET.
View Article and Find Full Text PDFMethodsX
December 2024
Federal Institute of Espírito Santo - campus Vitória, Avenida Vitória, 1.729, 29040-780, Vitória, Espírito Santo, Brazil.
Access to safe drinking water is a major challenge for vulnerable populations, especially in regions with limited infrastructure. The use of chemical coagulants in water treatment presents environmental and health risks due to their non-biodegradable byproducts, which contaminate ecosystems. Natural coagulants offer a safer alternative, as they decompose naturally and reduce pollution.
View Article and Find Full Text PDFToxicol Res (Camb)
December 2024
Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
Objective: Cadmium (Cd) and lead (Pb) are non-biodegradable heavy metals (HMs) that persistently contaminate ecosystems and accumulate in bones, where they exert harmful effects. This study aimed to investigate the protective effect of fucoxanthin (FX) against the chemical toxicity induced by Cd and Pb in human bone osteoblasts in vitro, using various biochemical and molecular assays.
Methods: The effect of metals and FX on osteoblasts viability was assayed by MTT, then the effect of Pb, Cd, and FX on the cells' mitochondrial parameters was studied via assays for ATP, mitochondrial membrane potential (MMP), mitochondrial complexes, and lactate production.
J Hazard Mater
December 2024
Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
Plastic pollution in aquatic environments poses significant ecological risks, particularly through released leachates. While traditional or non-biodegradable plastics (non-BPs) are well-studied, biodegradable plastics (BPs) have emerged as alternatives that are designed to degrade more rapidly within the environment. However, research on the ecological risks of the leachates from aged BPs in aquatic environments is scarce.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!