Nanotechnology-driven solutions have almost touched every aspect of life, such as therapeutics, cosmetics, agriculture, and the environment. Physical and chemical methods for the synthesis of nanoparticles involve hazardous reaction conditions and toxic reducing as well as stabilizing agents. Hence, environmentally benign green routes are preferred to synthesize nanoparticles with tunable size and shape. Bacteria, fungi, algae, and medicinal plants are employed to synthesize gold, silver, copper, zinc, and other nanoparticles. However, very little literature is available on exploring probiotic bacteria for the synthesis of nanoparticles. In view of the background, this review gives the most comprehensive report on the nanobiotechnological potential of probiotic bacteria like Bacillus licheniformis, Bifidobacterium animalis, Brevibacterium linens, Lactobacillus acidophilus, Lactobacillus casei, and others for the synthesis of gold (AuNPs), selenium (SeNPs), silver (AgNPs), platinum (PtNPs), tellurium nanoparticles (TeNPs), zinc oxide (ZnONPs), copper oxide (CuONPs), iron oxide (FeONPs), and titanium oxide nanoparticles (TiONPs). Both intracellular and extracellular synthesis are involved as potential routes for biofabrication of polydispersed nanoparticles that are spherical, rod, or hexagonal in shape. Capsular exopolysaccharide associated carbohydrates such as galactose, glucose, mannose, and rhamnose, cell membrane-associated diglycosyldiacylglycerol (DGDG), 1,2-di-O-acyl-3-O-[O-α-D-galactopyranosyl-(1 → 2)-α-d-glucopyranosyl]glycerol, triglycosyl diacylglycerol (TGDG), NADH-dependent enzymes, amino acids such as cysteine, tyrosine, and tryptophan, S-layer proteins (SLP), lacto-N-triose, and lactic acid play a significant role in synthesis and stabilization of the nanoparticles. The biogenic nanoparticles can be recovered by rational treatment with sodium dodecyl sulfate (SDS) and/or sodium hydroxide (NaOH). Eventually, diverse applications like antibacterial, antifungal, anticancer, antioxidant, and other associated activities of the bacteriogenic nanoparticles are also elaborated. Being more biocompatible and effective, probiotic-generated nanoparticles can be explored as novel nutraceuticals for their ability to ensure sustained release and bioavailability of the loaded bioactive ingredients for diagnosis, targeted drug delivery, and therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.156212 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!