N, N-dimethylformamide (DMF) is a widely existing harmful environmental pollutant from industrial emission which can threat human health for both occupational and general populations. Epidemiological and experimental studies have indicated liver as the primary target organ of DMF. However, the molecular mechanism under DMF-induced hepatoxicity remains unclear. In the present study, we identified that DMF could induce abnormal autophagy flux in cells. We also showed that DMF-induced mitochondrial dysfunction and lethal mitophagy which further leads to autophagic cell death. Next, miRNA microarray analysis identified miR-92a-1-5p as the most down-regulated miRNA upon DMF exposure. Mechanistically, miR-92a-1-5p regulated mitochondrial function and mitophagy by targeting mitochondrial protein BNIP3L. Exogenous miR-92a-1-5p significantly attenuated DMF-induced mitochondrial dysfunction and mitophagy in vitro and in vivo. Our study highlights the mechanistic link between miRNAs and mitophagy under environmental stress, which provided a new clue for the mitochondrial epigenetics mechanism on environmental toxicant-induced hepatoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.156218DOI Listing

Publication Analysis

Top Keywords

mitophagy targeting
8
dmf-induced mitochondrial
8
mitochondrial dysfunction
8
mitophagy
5
mitochondrial
5
n-dimethylformamide exposure
4
exposure induced
4
induced liver
4
liver abnormal
4
abnormal mitophagy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!